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4.

1.INTRODUCTIONi

Dur-ing the past few years there has been an* upsurge of inter- 1
eat in the effect of free surfaces On the lattice dynamical prop-

erties of crystals. There are several reasons for this tncreased

Activaiy. From the point of view of fundamental kno~wledge, the

development of axperizontal techiniques such as low energy electron I
difiraction has made availablo experimental information concern-

ing the dynamics of surface atoms. Those experitaental re~ults

have in turn stimulated theoretical investigations of the phencmcrna

inftlved. From the point of view of applied research, the use of

surface elastic waves in devices such as delay lin es has led toI

much activity concerning the continuuxm theory of lattice dynamical

surface waves, particularly in piezoelectric crystals. On the

purely theoretical side, the investigation of surf-Ace 6ffecto on

lattice dynamics has been aided considerably by the -availability

of high-speed computers and the development of many-body theoretic

t echniques.

In the present review, the theory of surface modes~of vibra-

tion in crystal lattices~ will be developed from both the continuum

and discrete lattice points of view. The dispersion of surface

mode frequencies and the damping of. surfaceýýmodes by both anharmon-

icity and imperfections 'will be discussed. Changes in normal

mode frequencies produced by free surfaces will modify thermadyaamtc

pr~operties such as specific heat. These effects on therzodynanic

properties will bo reviewed.

Pna'ticular'attenti6a will be given to effects associated 'withi

thq interactiorn of particles and radiation with crystal. surfaces.



I 0It cseof low energy alectron di~fraction, the DbeWle

factor provides information about the mean-square displacements

of surface atoms. The inelastic scattering of electrons or neutral

atoms frdrm crystal surfa~ces can provide knovledge of the dispersion

* of surface m~ode frequencies. Mean-square velocities ol surfaco

atoms may be studied by means of tho second order Doppler shift in

the Mblssbauer effernt. The interz-ation of electromagnetic radiation

with crystal surfaces may ba manifosted through either infrared

*absorption or the Raman effect. Both of these phenomena %fill be

After the present review was started, the excellent treatise-

.on the ;'Theory of Lattice Dynamics in the Harmonic Approxima~ionll

by Miakadudin, Rontroll, Weiss, and Ipatova appeared.) TIhe readar

is reforrod to the chapter on surfaco efiects contained tharein.

c
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2.* SURFACE MAODES OF VI BRATI ON

A knovledge of the aormal vibrational modes of the atoms in

acrystal is essential for the calculation of the lattice-dynamical I
propertiis of the crystal. Thus, to study surface effects, it is

important t.o know the effect of a free surface on the normal mode

frequeacies and eigenvectors. Gen era]ly speaking, the creation-of

a frrae sur.f ace tends to lower the normal mode frequencies and pro-

du~he a 0-ss of modes called surface modes in whizh the displacementf

amplitudes are relaLtively large at the surface and d-crease in

eosentially exponential fashion away from the surface. These effects

may be viewed as arising izu the following manner. Starting from

aperiodic crystal, onie may create a Vair of free surfaces by set-I

ting to zer-o the interactions coupling atoms on opposite sidea of

a plano lying between two adjacent lattice planeis. This decrease

in coupling constants produces a lowering in normal mode frequencies

and an increase in the moan square displacements of surface atoms.

In particular, surface mode frequoncies are typically split off from

the bottim of a band of bulk mode frequencies having the sanae wave

vector conponents parallel to the surface. However, this does not

meana tbt there may not be othar bulk modes with lower frequencies

t than surface modns of t~e same wave rector.

3-arfaco modes may be derived from either the acoustical or

o opticaý branches,. We shall begin our discussion by considering the

c cantInuun thoor? of surface vibrational zodes derived froa the

acoustical branch. For the case of an isotropic medium, r'e shzall

b ~be led to the-oldost examnlo of surface vibrational modes, na:-e~y,

Rayleigh vaves.(2

7.1
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7.I
A. Continuum Theory of Surface Vibrational Modes.

WithiQ the framework of linear elasticity 'theory, v8 may write

HIooko's le.v hia the forra

'pq - pqrs ax

'wheie ap is an elemnti of the stress tensor, c pqrs is an element.

of the elastic constant matrix, Ur is the r-th Cartesian com-ponent

of displacement of the medium at the point whose position voctor

bhas the s-th CarteslDan component x.. The summation conven tion for

repeated indices is assumed in Eq.(1). 'We shall take the I and2

Cartesian components to be parallel to the free surface.

*In order to discuss vibrations, we need the equations of motion1

v~b1%x can be vri't ten in the form

B 2u 21a~
= ax , - )2,3(2)

whore p is the density of the mzedium. The definition ot the problem

£~s completed by specifying the boundary conditions at the free

ary conditions correspond to vanishing of the three components of

Rtress acroso this surfaeet

Gr3 - 0 at x3 - 0, r 1,2,3 (3)

At this point it is helpful to specialize to a c~ubi4 crystal

with principal axes parallel to the coordinate axes and adopt the

volgt notavion for the e~lastic con tanto. Co~bluinL Zqu.tl)

and (2) ve obtkin the equations of notion.

MEMEL%
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2t Tx_ 'II'x '2(y 8

+44r.L (-u + V- + ýL U+ AW_ (4)
L By By ~ ax+- aI(z

plus two other equations obtained by cyclically perm~uting (u,vcw)

and (x lylz). 'a Eq.(4), (u,5u2,u3) have been replaced by (u,v~w)

and (x l 1x21x3 ) by (x,y,z), respectively. The boundary conditions

take the form

Bv 4: ýu 0 w 1W A

c lu +LV + AV-"- 0

Surface ivave solutions to Eqs.(4) an~d (5) are characterized

by an exponential decreas~e in the displacement amplitudes in the

positive z-direction. We accordingly seek solutions of the form

(u'v;'V) - (UVW) exp {Kt-qZ+i(tZ+ny-ct))} (6)

ibe~re c is the phase velocity, x is the magnitudo of the tw~o-dimen-

sional vi~vo vcztor dt'scribing the propagation parallel to the Sur- I

faa q is A dimensionless attenuation constant, and 4.,m are the

1±rectioa cosines of the propagation direction. Substitution of

Eq.(L5) into Eq.(4) yields the following secular equation which muist

be satisfied it the assumed solution is to bo non-trivial:

j 1ý
2.Ha'ý-p2-q 2  tn(g2 l) Cg 2 l

.t(r2+1) aq (g2+1) p .. i V2-

-40,4, ~



In Eq.(7), g1 e ll/P'44I g2  01/ 44 and P 2 PC 2/4.I

2
general, the solution of Eq.(7) gives three values of q for given

v~Jues of the velocity c; and directioa cosines t,,m. Denotizag the

three values at q wvith positive real parts by q#J-l,2,3, wo seek

to satisfy the boundary conditions; Eq.(5), by the superpositicn(4

v~here

g_ t2 g12_2 - 2 )P2+qj1): 2 j2 (21

-l _ t(g 2 +l),,qj 2 (g 2 +l-g,)+- 2 ) 9
C~-'Cc~+12 1 32 2(2)

44j(92+1)lm 2(9 2 +l-gQ-L_ t+p2q]

Substitution oi Eq.(8) into Eq.(5% yields a'set of linear homogeneous

equations in the amplitudes K, whose non-trivial solution requires

that

-f0j (10)

f 2j - 1,j-* qj Cj

M MC - qj,, (1

The quaritities qj which appear in Eq.(10) are known functions of

p from the solution of Eq.(7), the secular equation. Equation

(10) can thw~refore bo used to dstarimino the surface wave velocity

or frequency aud 'vill be called the frequency equation.

A4 *



The nature of the surgace waves In a given situation depends

on the elastic constants of the material,. the crystallographic

plane to which the surface is parallel, and the direction of propa-

gation of the wave. We nov consider solut~Zions of Eqs.(7) and (10)

for some special cases.

(I). !sotropic Case.

An isotropi.c elastic medium is characterized by the Lame'

e~rstaats X,4i. which are related to the usual ela.!,;c constants c21

C).and c 44 by

c 11, X 2p c12- X 44(12)

Equations (12) imply a relationship among the elastic constants

which is given by

C 1  C1 2 + 204 (13)

F'or an isotropic mateiial, the surf ace v~ave chiracteristics

are independent of the direction of propagation. We therefore take

t-1 &-0 in Eq. (7) and utilize Eqs. (12) and (l'j) to obtain' the j,

Bolutions

q2 .q 3 .lP2) (14b)I

where g (X+12p)/g. . We note that y is the ratio of the wave

Vel-tity c to the velocity c t of transverse bulk waves, while

p/9i is tho ratio of c to the velocity c, of lon~itudiaul bulk

v aves., In order to satisfy the bo~uddaUy conditionsi, one must super-

pose ,8olutions corresponding to q, and q2 . The frequency equation,

Eq.(lO), can be reduced to the form

- 4 "V
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11.

g(p 6 8p 4 +24p 2 _-16) - l6(p 2 -l) ' 0 . (15)

Solutions of E,.(15) corresponding to surface waves must have

c<ctyct so that q1 and q2 given by Eqs.(14) are real.

Physical values of the reduced surface wrve velocity p obtained

by solving Eq,(15) range from 0 i6 for g - a , the incompressible

case, to 0.69 for g - 1.333...., the smallest value of g consistent

with crystal stability. The displacements associated with the

surface *wave can be expressed in the form

[X(, -q2 z x e(16)

w 1K [sp/6)] i[e-Ql1 (l..p2 )-10o n 2zjciX(x1-ct)

where K'is a constant. We note froeiEq.(16) that the pýrticle dis-

placements execute ellipses in the sagittal plane-i.e., tui plane

containing both the surface normal and the direction oC propagtion, j
Wc further note that two attenuation constants, q1 and q2, are

required to characterize the surface waVo in isotropiP. iaterjab'.

"K .. For the incompr.esible case, q,- 1.00 and q, - 9.3,. A diagram

illustrating the displacements for g - 3 is shown Ua rig. 1.,

(ii) Anisotropic Case, Cubic Srmmetry

A. Surface waves on the (001) surface

"For the case of the (001) surface of a cubic crystal,

one must solve £q.(lO) for the rcduced velocity p using the values

"bf the elastic constant ratios' 1 and gZ appropriate to the crystal

Z 4



12. '
under cooieideratioa. ror An. arbitrary diraction of propagation of

tho surf~ace wave, it is difficult to obtain an~ cqu-ation analogous

to Eq.(!$) fcr the determinatior. og p. Hoveve:-, Stonelcy~~ ( VS

able to derive such equations for the tvo directions of high synmetry,

III the C1001 directiou, he obtained the equation

(1-p ) (g, E2 _2
2 91P

2  
-I gp(g3.-p2 ~- :

vht1e in the fl1103 direction, he obtained the equ~a;Aoa

(1-p 2 2-g3 p 2 -g 2 - g- 4 (g3-'p ) - 18

whora g3 - (,g+) In other directions, it is necessary to

solve Zqs,. (7) and (10) Liult-anvously a computer. *The d-ii-

placement pmtz*.rnz for surxface 'waves propagating in -týi D100) And

[1101 delirectionr zar qualitatively, a~ar to the isotiopic case" I '

iethe displacem~ents are Ruporpositions of twi atte~uatad~ terms

and trace out ellipses lying- in the sagittal plane - ith a princ~pal

axis perpendicnl~r to the surface, For other directions of propa-

g~tlcon the dispi doente are suporpositions of -three attenuitted

terzis sad trace oatt ellipses 'which in general ave inclined A.t some

It 1-, fourid upoA solviuZ ýor t~dx-educcd velocity p and the-

attenAuztiot conr5tc-Its qj that. surfaae -;mves :jay oist-having eile

To.) o~r cc'~plex attearnation ~cone-a-ats 4ependim:ý ioa the elastic con-

t. ol tbe nateril. 'afacm vavesi charact~r,~dbrra ttn

--u;ý,ior constants vill be o~lled ordinary Ray oI,;b wace- whil14 theso

charact*r~o'd ~y, cozplax --tteauaticii coaa is~it vtill Vo cal~s. gon-_OM *aY.; 2>,
1,1zed 4y

-V - ---

~49'_
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Viah diatinction between miatarials having the two differcnt

types of surface waves can be illustrated graphically using a plot

of the elastic constant ratios g vz g2. The case of propagatioa

in the DIOD) directitin Is shown in Fig. 2. The region of cr7&tal

- stability 'As that to the rigbt, of the lines gl-g.2 an~d g,+292-0.

Points zerrceiponding 0~ a iluwubr of well-known cubic crystals, are

shova. Uaterials to the right of the line labei.ed 'bouad 1P possess

ordiipary Razyleigh waves, vhile those to the left of bdvnd I possess

goaorallzod R~ayleigh wavei. The line of itsotrapy -gI- s shoun

in Fig. 2 and is spen to lie entuirely in the ordinary liayleigh wave

region as expected. Onte =ay ncto t-bat 'whether a surface vave Is A

ordinary or a generalized Rayloigh a& does not "mp-1lY ;Zrespoad

to vhetber the aniv~tropy vr~aeetor ýc44 (~c 0  in lcss thtkn 02?

gre#~ttxý than unity, :ýespectlvely. The 1ine labeled "bound 2" in

Pjý 2 sill be discus.ied la~ter,

*Siaze ebtic m~yatals ir. conerai are a isotropli'., th~e voloeity

of surface wavos --till depead on their direction ol mvopagati~on.

-v~z results Oif solving, te trequercy eI~ru't~ioa, Eq,(10); fo The

04rfac~t vavo-veloeities of Sover~-A paleriai-b is shown A n Fl-

*hero tbe rezduced velo ity p is pl2,ttu no FA function of directioec

of Propagation on theo (661) surfaxcv. 0i see~s that tle volocity

varie -vory slowly. !6i tthc UýIali h4ýJides YWZ and 4A:Ct,_ ta~ 5Zt0o0S

panre pronoun ed yz:iatiog iujdlý a ~t~ii orA1,,dtw 44)I

Zinc -Uceude, -n-Oi. t ma7 3~, ýoted thtat tfiose alkali IhIidde

* oabbit in'diniary Rayleig& Evi:e&s, vlfexas th Qtb Abia~ 2~ii

* g~ar~ize ~ 4otlhor = wi~~y -I-- imdo Is~-

tlxal the a~r~li hWiida Jft, ii aqb4 to XV. has. geýas -

)C - *

10%-
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14.

ailZed R..ylcktgh waves.4

'TnO thyee attOnUatiOrn -on tantre q1, q2,q2 required to character-

ize a 7ýyleigh bwaye Vary smoothly and rather uxninterestin-§ly withI
directlý,zf of propagqtiori for the ordinary Rayleigh vave materiulis

* Ka~ '%ad NaccM Poýr a generalizesd Mayloigh wave matorial sueh as

CUl however, the atfenuatton annstants exhi-it. the-rather interest.-
inig bnhavior Ashowfi( &ia Fig.. 4. 11ere q, nd thý real &.nd imagicary

parts. ol q2 And q. are-plotted As funct~ions of dirc-otlon of propa-

Zatiozi. One totes that q, goes to zoer when the dirautl,:ýn reaches

the [1101 directioru. m'~~ioan.6 that the turface vaye desn~r~es
-oa bulk vava at 2ýhe [1103 di~rettoun. Early inumerical e~lculationsa *5j

indicated ihlat q2.raches -zero bof~t-e the £110) dix-ctikoa in re-ached,

but keetymr recis aluain h ave fontaIti
on inU the £1103di-tecticn itzelf'that q is zero. 'Nevertheless,

-ths -generalized RIayleigh wavoas -pnetrate deeply Into the m~aterial

l or propag,-tion near the [1101_ 4irectidn, and for etystals of ordi - j
4!?y tbJckokneS 0.1-1.0 CZ, surface vaves will exis~t near £110) only4
for yery short vave lengths.

From. the foraegXg one conclud*9 'that tae turves in Fig. 3 ;Eor

* th go~wnlied ~y~-gh *ave materoa', corresqznd to bulk (tranvqs.
'~Vc~hen the EllC] irection is korchtd. ISo'wever, surface -vwtcs .-

dLo 16:ýst for tbase t-atrials in the £1103 diroatkin, brt bothe1 ve- -4<- ~

ocitieis ar* higher Mua th b llmiýIng ve oeities in~ the C-110],
* irectioa *azown Un Pig. 3, Titoe true- suria* wave ve -:F- es ar

o (1) Tor ca the rIedued' vl~ocitV 6 f the

va-ve 14i lounti td be Ob.3- u~hich uay ba cozparfvd t p. 118 lining' re-

*de'vek4R~iy Pof in8 tbw £1103 Sie~i 14
>~R:Z

2:

C ~ ;g

2-: ,4~

'N
iýC~



We now &sk which cubic materials have the surface wave velocity

-in the l~Jdircetion higher than the limiting velocity in that

direction for the surface wave branch. The answier is those materials

-whose o'la.Mic constant ratios fall to the left of bound 2 in Fig. 2.

B~ound 2 ±i6snlf corresponds to the eq~umlity of these two velocities

and io M.taqtd by eliminating p from Eq,(l8) and from the equation

92

which spsecigles tU-ý lia~ý rduced velocity in thlo E110) dire~c-toai.

- The result Is.

22glg 2 ) (g~j~p,4g 4 _ gt 0 (20)

which ta the eqraticen Z~4~

'. Poudo:;rf aco vavas or, (001) surfraces.

The surfaeo wave In the £110) direction on the (001)

plane of. Cux is the limiting case of s~o-called pseud.-ourface avs

For directions near the £110) direction, .theý5e waves iavolvo dis-

placements of the type given, by Eq.( 8', but one of the attonuation

-. con~stants qjis pure izaa&knary rather than real or tozplex. This-,

mowas that there is component owte~v hichi does nct ~tnattv,2,z

.u the direction a.;aii frorm the our-ace; ý.adcz, the n-" psoudoSUZ71zaa

wave, The nou-atteiuu,`t'd ý,monvenet caurc~a a flo~ oi eaergy aimy

from tta surtace. This in tgra. requires that the 7avae Vactor Ci-0.

pon~ts- alal1o to the surf .e m~aypats Ta h

wavae;cy as it-, rpgt; th iq4r3a&! In -many 905Th

.. .
l t t

*Fig. ,Tadsrc VV acito

__kaol are ýVbovuz soý: O1)sr Copper? ro ~1~

-z -4 -'0 r

vV
-~-*** -- Z



below 2,ýO the pseudosurface 'waves are nearly pure bulk 'waves,

while at 450, the wave is a pure surface wave, Also shovn I~n Yig.5

are the curves for the generalized Rayleigh surface 'waves and for

the lover transverse bulk 'wave, as well as experimxental points (7) forI

the surf ace and psoudosurface vaves * The bulk 'wave curve approachesj

vory closoly to the surface wave curve for angles great-er than 300

and finally rwerges 'with the surftre 'wave curve at 460, Ass we haveI

seen, the sur.-ace wave de-geaerates ioto a bulk -wave at. 4C1.

Pseudosurface 'waves a~e typically exhibited by matetrials having I
elastis con!;tant ratios to the left of bound 2 in Fig. 2. A number

6f specific materials are discusred tur detzil ip' the recen~t review

article by- Parell The vituajtion for Dait s, however, tasirly

rpprosentattvo og thait %,ir other-cubiq z-iaterials. exhibiting pwud,ý-

surface vfSvas.

c. Surface 'wavov tnd psaudosurIfaoa vzves.oa the (1

ar.4 (111) surfaces

R~y.-ei~gh 'Watves exist on the ('410) ;ýnd (i117 stkrtaces

-of cubico crystal&-. -Vtarizla~ which exhlfi t ar4i~iaiy Rayleigh wav~es

on the (001) sAýýce frequently exhibit generlliz~td Raeyleigh vaa~s

on th'e (1li0) surfcac nnd vice-vorst. On f'hhd -%'III Sti5urac, i'ha

SUr0-6A~ 'waves tr'i typieallyQf the giok&WaIIe Uayloiwgh ty6

~ -on both O,10) ;M4n (9.11) surlces,.

v.q lukth2r' -porma0iin c ccre~ir& surfaco -wavsps -OP varaious swr--
faese~boi~ t!icu --q -~~,the reader nay c~on-J-

Goa tl' jjv*ý_-'yý ar e

7-

* VN-v. --
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(iii). Non-Cubic Materials.

When one investigates materials of lower symmetry than

cubic, the calculation- become m~ore forinidablo and a general, sys-

tematic t~reatment becomes desirable. Such a treatment has been

given for the non-piezoelectrlc case by Ingebrigtsezn and TonningI~9)

who utilized a six-dimensional vector formalism.

Specifi~c calculations have beea carried out for a number

of cases. Deresiewicz arc MindlinxB) showed that surface wav'es

car. propagate on the ATI cut of quart.z. Zngan et.ai(ll) have ex-

perimentally observed both surface and pseudosurface waves on

various surfaces of quartz. Their data are in reasonable agree-

Mont with Thoorotical calculations. (12) Farnell~8 ) has

summarized results of surface wave calculatiet sor a varicty of

tetragonal, heiaganal, trigonal, znd orthorhombic materials. Some

of the featdrioe revealed by these calculat~ons will now be 'dis-casseI
Surface waves propagating on the basal pi-no (0l plsmo)

~- -of tetragonal crys:tals- sho-a marked similarities to surface waves

propagating on the (001) plane of a cubic crystal, So~e Tdaterials

such as tin and zarcon have ordinary Rayleigh waves wi.th little

variation of surface wzvo irelocity with d~rection. flutile, oa

tho other hand, exhibits both ge.ieralized Rayleigh waves and pseudo~-

surfate waes and has a marked variation of surface wave velocity

wIth 0-irection. Tho (110) plane elso exhibits surface Wave bo-

havior anlogous to that found for the (110) plaza of cubic crys-*

tals. The (0210) plqae however, has lower symmetry than the

corresponding pl!4ne of a. cubic. cr7sta.3, asn4 the surfuco wave

' ~ ~ -~-~t
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behavior more nearly resembles that of the (110) plane than the

(001) plane.

The basal. plane of hexcagonal crystals is isotropic

for tlh propagation of surface waves. For som8 materials, suchj

as CdS, ZnO, and Cd, the sur2ace waves are of the ordinari Rayleigh

type, while for Zn the surface waves are of the generalized Rayleigh

type. The basal plane of trigonal crystals is norsal to a three-

told axis of symmetry and, as miight be expected, exhibits surface

wave behavior snimilar to that of the (111) plane of cubic crystals.

For further re~'ults on non-cubic cryetals, the article by Farnell

may ve nvnmsulted.

(iv). Piezoelectric Materials,

a. General discussion.

Many piezoelectric crystals have electromechanical

coupling constants which are sufficiently small so thiat the piezo-

electricity can be neglected when one is discussing surface ellas-

tic* waves.. For other materials., such as lithium niobate, this is

.no longer the case, and the surface wave problem must be reformu-

lated to include the piezoelectric coupling. This has -been done

(13) (14)by Tzeng and White 13 'and by Kraut. The three Cartesian

components of displacoment zust be augmented ms variables by the

sca..zr potential cp asso~ciated, with the electric field produced by *

th tan.The stress is related to the strain and to the I -

rs rspq xq *j.rax

imher.-i the epr are the components of the piezoelectric coupling -

4:%.
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tonsor. The equations of m~otion are now obtained by substitution

of Sq. (21 ) into Eq. ( 2 ) giving the result

t \Co.spq Z% pr (22)

The constitutive relation involving the electric displacement

D and the dielectric tonsor Epr

rp -

p pr: Ox - 'pr Ti-

together with the Mvx~ell cquation

V-D - 0(24)

yiolds; the equiation

kep r Ep Z) "O (25)1

which is to be szolved a~zu1taneously w'ith Eq. (22).

The boundary conditions for a surface cGefined by the plane

-0 have th tozrm

C~~q~ p~ ~* 0, :L J2,3, (26).
7q ZYp

corresponding to the vanishing og the three components CLf stress

nat 0,and

3 S

7-*

~~1-*
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corresponding to the continuity of the normal componAývt of B j
x3-0. Xn Eq.( 27'), 0 is the electric potential outside the

crystal. It igust satisfy Laplace's equation and approach 7zero

as X -

For a general direction of propag.ation, one has Ux4 d1eter-

mainants In the secular equation aind the freque~ncy equation ratber

than Sx3 determainants 3s In the nor.-piezoelc-ctr.4c case. Surface

wave solutions have been calculated 6)for a numzber of piezo-

electric materials. In art approximato sense one can exp.ress the

surface wave velocity in termss of elqstic constants "itziffened'"

by the piezoelectric coupling. Another consequence of the plezo-'

electric coupling is the 6existence of a new type of surface wave,--

tho Blioustcin-Gulynev wave.

Specific calculations fbr~tbe interesting maatpriol- L

litiuz nibate have becii carried cut by Crazbell aind 4ones. (7

Their results show that omi1ssion of the piezoelectric coupling

leads to surf ace vrvc velocities which are on the order of 15%

too low. Tseng and White (3 ) have calculated surface wave veioc-

itlr~s on the hasal plane of CdS, CdSv, ZnO, and lead-titanate

zirconate. The effeut of various electromagnetic boundary con- -

ditions on surface vave propagation in piezoalectrics has been *

investigat.td by Ingebrigtsen. (18)

b. Bleustein-Gulyaov surface waves.

In the case of piezoelecteic crystalz a surface

piezoelectric crystals. This wviv was independently discovered

by BloustoSin a1) nd Guly'aov. 16  It consists of a vrxisverse

wave having its nechanical displ~actanant parallel to the surfacu-.

1 -4

I: .-. z.-
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'An ord4±riary norfaco wa1ve, on the ether hanid, hats it* mecounical

displacement no.-.parallel to the s~urface. Consider a material

suc asCd beongngto clas5 and having Itz; slx-fold axis

prrallal 'to the xdirection. If we consider a surfati defined

by x2 0 and restrict ourselves to displacements only in ýao

-3-direction which aro functions only of x, and x2, then Vqs. (22)

and (25 ) reduce to

b2

2

where V2 is th. Lpplaciar4 in thio var ables xi , and the Voigt

notition has b~een usad for the els.stic and pie-zoelectric constanta.

The no'' 4 ii1bouudary conditions at x -0 can be written Us

f-4 + O'S

-~-- e - I(29b)'

~ ~2 2

Tihero 4) - (c5/ell) U3 ad c44 P474+ e51

Taking

123 OW A co k~w~x(q 2 ,x~0(30a)

-Bcos (xtox(k),x 0 (30b)

C cos (Ikxr-at)exp(kx,) , ý 0 *(30c)

And substituting into Zqs.(2 8 ,w find :Cor a non-trviva1 Solu-

tion that

(61)

'U-4
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Subm~tAtuting Eqs.( 30 )into ZqG.( 29 )we eat the relation

a2
k *(52)

11.4 (1+ )

Combining Eqs.(31)' and (32), we obtain for the speed of the

B71eustein-Gulynev wave

1 (33)
E1 1 c5414 (lE

It can be seen that the speed is somewhat loss than the transverae

bulk wave speed calculated with -the piezeelectrical'ky stiffened-

elastic constant Cý4 4 .

Bleustein(lS)*has also treated the dase in 'which-

the surface is covered wiLth a grounded thi2, perfectly conducting

layer. Gulyaov(16) has consideredthe situation where free cha~rge -

carriers are present 'in the crystal. Tseng(9 has shown that

surface . aves of the Bleustein-Gulyaev typo can exist on certain

surfaces of certain claSse3 041 cubic and orthorlhor~bic crystals.

Specific results are given for B112 Ge 20 (cubic)-and B22 WA, "5b 015 ..

Corthorhocibic).

B. Lattice Dynamical Theory of Surface Vibrational H~odes.

(i). Static Displacements Near a Surface.A

In the lozttce dynamicvl theory, one assumes that the .- -

material under consideration Is made up of dincrefo atoms or lune

which vibrate abou~t certain equili.brium Positions. For an infinite

crystal those equilibrium positions are associated with the sites of a

crystal lattice porlodic.in, three dimensiono. The carystal cam be ~ 4-

AA-"

* -4. ~4
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considerad as made up of unit cells, oach cell contuin~ng a certain

number of atoms. The position vector r(tx0 of the x-th Atom In

the J,-th unit'coll may be expressed in the form r(,k)- Mo).

!1(4.) where R(O (tn) is the position vector of the equilibrium

site and u(tx) is the. displacement vector from equilibrium. In

terms of the primitive translation 7ectors of the lattice

a2, t3, one can write

a ~()~~ 1 l+ ~ 2+ + (34)

where ti, 42; -L Are integcrs .and RWn is the position Yector of

the x-tb atom rclativ6 to the origin of the unit cell.

We shall consider semi-inf~inite crystals with a free

surgace parallel to some lattice plane. The crystal is periodic

in the two dimerisions parallel to the surface but not In the di-

mension which is normal to the surface, Tvo basis vectors aland

n ay be chosen parallel to the surface, while the tjiird basis

vact-or z3is chosen not parallel to thd surface. These basis vec-

tors may or may not be the primiti've translation vectors of the

infinite lattice. The equilibrium position vector R(U) for an

atomi in the demi-infinite lattice can be expressed as

,Thor* Zhe vector S(L.K) ta-kes Into iiccount the "relaxation" at

the oqiailibrtum atormic sites in the sem!-infinite crystal away

from the corresponding -sltea- of the inflnit6 crystal.

C- ~The-atztic ciisglaccezen~ts A(U), are cppecif.ýed by ths

eqt~librium coia.1tlom

-lei, 36
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6; 0. 112 2.a 3

where I is the potential energy of the crystal as a function of

the atomic positions and s is the number of gtoms In a unit cell.

It the static displacements are small,' they "ay be determined by

expanding the forces appearing on the left Ini Eq. (36) In power

series abou.t the configuration the atoms would have at equilibrium

in the Infinite lattice-

-0 * (03('Q)+ .. (7

*WW~ -Oa.cI(4n)' 0 *(38)

U0(A;4'K') - 'I~.d~.4K~s~~,aK) . 0 1. (39)

and higher terms in the 94ries expansion are neglected. One Should

notethatthego~res (o)not tatthefoce CP (4K) are not all zqro because 0 is the
potential energy for the semi-lnfinite lattice; in fact, the

F~ (i~)are non-zero for those atoms whose distance from the
surface is less than the range of the Interatomic fo. .es. The

0 4K;,'x'.are the harmonic coupling constants when the atoms
are In the configuratict appropriate to the Infinite lattice. For
some assumed set' of interatonle. interactions, the static displace-
=outs can be calculated from Eqs. (30 and 73*4 b~v solving a setA
of inhonogeoaous a1gebraic equations.

1PbysiiCelj, the qeziý-inflni1e lattice zmay be regarded an ~ ~
arising from the Infinite lkttice byi the rezoval of all atomsr 4,4

515 _2 -0
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beyond the bounding plane defining the free surface. Atoms near

the surface are then acted upon by unbalanced forces, FO

due to the removal of the interactions with atoms across the

bounding plane and therefore rolaxN to now equilibrium position&.
Symmetry frequently requires that the static displacements be

normal to the surface, but this is not always the case.(20)

A general discussion of the rol~ixation of atoms near &

free surface has been given by Fouchtwang. A number o~t cal-

culations have been reported based on nurnez).al solutions to

Eq. (36) using models InvolvinC Lennard-Jones or Morse .potential

intc~ractions between pairs or atoams. For exam~ple, various sur-

faces ctf face-centered cubic crystals with Lennard-Jones; intfur-

actions have been studied by Shuttlewoz.th,(1 Alder et al,()

V Schmidt -and Ju~ra, (23) Benson and Claxton, (24) and Allen and

Do Wette. --- The results typically show an expansion outward

of the crystal at the surfaco. The inc:ease in the iaiterlayor*

spacing is on the order of 2-3% at the surface and decreases

rapidly toward the interior. Allen an~d do Wette(5 have shown

that for az interatomic potential varying as 1/ri', p > 3, then

the increase in interlayer spaozing varies at large distances d

from tao surface as I/d";"-. Thus, fo'r a 6-12 Lennard-Jones

pot~ential, the spacing varies as l/d , a result previously gives

by Alder et l(2

The (001) surface of a simple cubic lattice has beau

trc~tad by Yun and Benson (2)using a. Lannard-Jones potential.

They find only a 0.5% incroase ian Inter1~qer spacing at the sur-

lae 1' ... 7), on the otber band, used a Morse-pote.ntial and

* '.**
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found a 2%P incroace. More extensive use of the Mo, aze potentia.

has boon reported by Jackson~ (2 who at-diea the' (100) (110.".

and (1ll) surfaces .v;ýriety of .- e-contered and body-conterac

cubic metals. lie f i4nd oome surpX: -'n-1y large relaxations of the o

surface layei ea.g.., 20%, for the WYO) surfaces of Ca nnd Sr,

and 80 - 95% for the (111) surfaces of alkali metals. Whether

such large deviations from the bulk interplanar spacings are

phy~sically reiý&enable remains to be seen.

Cdnsiderable wbrk has been done on ionic crystijis of

tha alkali-halide typo by Benson and coworkers. For the :

(130) surfaces, they find typically an alternating contraction

and expansion ofA the surface layers. The surface layer con-

tractiono riange, from about seven percent -for Nat to one-half

percent for UhF.

Benson and coworkers allowed only the firot five Asurfacet

layers to relax, but permitted sepArate relazxation of the cations and--
layes. Tng Pid Uraduin(30'

anliorns within those ayr. on 4)arudi 'have followod z

dfferet.t track by considoriitg a& NaCI crystal of 15 layo-rs anid allowvng

al ayr t elxwith respect to bot intralayor an 1nteraye1
spacngs.They did not, how-ever, allow separate, rolaxatiop, of

cationsQnd uni ns&n required the ta-tralaye;- relaxat-ion to be

the samo U all layers They found atw tntralaye~r -conyroction Ofw

about 1% relative to t-7~trt-rsa rn-e~~rsaig~

and- ax nwserxs~n 0$f about -% rUtative to the -new intrra- ---

layer zvoxrstz-nzigtubr 8flWn Utteflay exPtsaion is --

soevht snaler a thesurftac' than Un tho ±nterr.lai-l~ -

-- M X L

- -~~-- -- ~- -~ - '-
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Relatively few analytical results for the static dis-

plAcements near a surface have been presented. GaZiS And Wallis (31 )

have solved Eqs. (36) and (37) for a rscmi-infinito linear chain

with nearest and n~ext--nearest neighbor interactions. A similar

cAlculation b~as been carried out for a body-centered cubic lattIce

'With a (001) surface by Clark-et al(32) using Lennard-Jones Inter-

actions between nearest and *next-nearest neigh~bors. In both

cases the staticidisplacemonts were found to vary as eip(-q.3)

for a surface at t. - 0 V'hore is an integer :z 0 labelling the

lattice planes, q has the form q - qO+ I~rr, q0 is a real

positive vimber on the-_rder of uni~ty, and 0 is 0 or I depending

oun the force constants. This exponential drop-off of the static

dipleeents with distance from the surface is to be contr=sted

with tbo'inverse power law dependence obtained by Alder ez &I(22)

wind by &IleJ. and Do 'Wt-ttc for Lennaird-Jones interactions

between all atom pairs rather than just nearest and next-noareat

neighbors.

t).Equations of M~otion for a Crystal Vith a Surface.

The vibrations of the atozs in the crystal -may be ana-

lyzed by expanding 'che potential energyi. oe ere n"b

coz:pOnonts of the displacements from th~e eg-ilibriuzu sites of h

ul Gerdz-infini to lattice,

+ A it- 0 VXyCAUK w' (ý U U x

J, 7e ---



Cry 0 ve Z- r' rJ O I~~~ (41bi)

ard C(u-LKiO stands for Vie entire set of displacements u(tUý).

The coeffcionts 0 Q0 etc., are the harzonic'cou-

pling const::tt:, the cubic :nh arseonic coupling constants, etc.

conditions. The periollicity ol the lattice parallel to the sur-

face (specified by 4ý W 0) requires that the coupling coefficients

be functions only of the differences -4 J- ,i-

Setc; however, they rare in general functions of 4.3i44

separately. Iniinitesimal translatIonal invariance re-

quires that

t L (Y..4') x 0, 41Kt 4."ix t 0 a(4K,4,KIIA..,) 0n, etc., (42)

while ixifinitesinal rotational invariance requires that

4 (Lxc~xv RU R E(t. X)LJ 0 (43)-

with corresponding equations for 'the atharzogic coupllvzs--oeffiý

cients. Thbe constraints imposed on the !zoupling co;ýif3,ients by

rotational invariance are particulsirly impdrtu.xa for- surface

probleazz. (33)

- 7-

-47.
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The normal modes of vibration for the semi-infinite

crystal may be found by solving the harmoniic eqjuations of motion

f.or the displac~ements u( 4 x). Using Eq. (40), these equations

can be written as

iA 2 u (?,P)

~t (44)

'where we; babe used the syzast~ry property 4-V?')

(4Y14) -The solut'ion o:Iýq.(411) Is complica d by ~two fr~tors.

First, there is no per;Wdicity of the atomic site~s V IS diroc-

tjon normal to the wukfi~ce; smcohd,' the coupl-ing -q*z:ricieaM

~ Z s)are niot necessarl -~the sane, asi U corresponding

coeffici16n~t~i',Xe~ the infial-te latt'i-e26

Ageneral discussioa of the coupling Gtmstauts in a semi-I

infinite crystal'bas bengv b Fouehtwang,.O On m ay 04pand

the coupling coefficients in power series ir. the static displace-

Mrqnts S(Lx)

it is clear frois Sq. (AS) that the changes in the coupling tonstants

4rse from anharnonic effects -and that they will be l-x -,ear the

mrfacet whare the 8(3 are large. The coupling coeffp5 vi ith

th superscript zero, it must be umphasized,_ are still rmt zactL-Ssarly

e -' -to the corresponding coeitticents of tha Infinite lt~~

, becausa the £itozz near the surface n _ Io polarzj~d ar id-p;ita

4occury the ~atas thizy 4otuld -OrCqpy kn th itxfhi-alta

0I
~!q7



Changes in surface coupling constants have boon calculateod by

Clark~ et al () or the case of a (001) surface of iron using a

model with Lerinar~d-Jones interactions between nearest and next-

aearest neighbors. They found relatively large decreases (20-30'%)

in certain of the coupling constants at the surface compared to the I
bulk values even though the static displacements. at the surface arc

uaily about thr'ee Percent of the bulk lattice spacing.I

Tiurning now to the solution, of the equations, of notion, we

exploit the translational periodicity parallel to the surface by

seeking solutions to Eq.d44) of the form

whero w is the circular frequency and kis a dimensionless tvo- f
dimensional vwave -vector parallel' to the surface vith corponeats

kian R2' Substitution of E4.(46) into Eqd(44) yields a[ set-of --

linear difference equations in 'the azplitudes v (4X,w)

where -

(48)

axp the elements of the reduce& dynamical natrix of the semi-infiniteI

cyTheal. to of the equations mof oion specified by Eq.(44)

is more complicated than for an iafizita crystaI for two reasons

First, a grVen atom does not Interact with atoms beyond the bound-

in; VpLan -*f the -orystsa so ce-rtain terms are misiing from Eq. (44).4

Second, thes coupling coefficients that ame actuall.y 1reseat may

-var7 W~tIbt the distance at the couplod atozms from the surlace. --- '

-X-



T1~e normal mode frequencies of the crystal are specif ie., by

setting the determinant of tha coot Cicionts of the amplitudes in

Eq.(47) equal to ze~ro:

2 6 -31 6 x,, 6~ jx 0 49

For a semi-infinite crystal, the determinant in Eq.(4SD is infinite

In size. A finite determinant can be obtained, however, by intro-

duciag a second surface parallel to the first ana specified by

L3L.One is now dealing with a plate having L 3 atomic layers.

The size of the determinant in Eq.(49) is then UY3sLxUL 3 where s

is the number of atoms in a unit cell. Results that seem reason-

ably representative of real crystals are obtained if L is as small'

as 20 or 30. For simple crystals one then muvt work with &Ox6O or

90xD0 determinants, vhich can easily be handled using modern high

speed coupaters.

Altern;,tivo approach, puxtl :ularly uso2iil vith sbort-rae~g*

forcesi ia to regard sack' atoo as btav'ag the same oat~oas F~g

Th'dY aust be augmented by boundary bonditions, which are cotatraintg

that restore tho effect of the sur~ace on the equations of motion.

The procedure is completely ana~agoids to that employed with the

continuum theory of surface elastic waves. The dotermInan~ts which

occur in the analogues of the secular equation and the froquoncy

equation are generally on the order of Ssx3s in asiz, which are

relatively small and are easily handled on a computor.

-Some general aspects of solutiou.t to the equations of motion,

Eq.(44), hrve been discussed by reuclftwang.() For a seni-infivite

crystal, such solutlons iay be "bulk" solutions vhere the displace-

"*nets u (4)d o approach 40dono ro va b a and "surface" solutions

whero they approacb zero zmm 434, Fior a finite slabs the surface

and bulk soutiot6as iffer accordit- t hte tedslc~t
31 IdVg t6vehr iedspaeq
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do or do not approach zero, respectively, at the center of the slab

as the thie-kness becomes very large. la the following we shall

*onsider the surface solutions for a variety of special cases.

(iii). Linear MIonatomic, Chain

A specific illustration of some of the points mentioned

aibove is provided by the semi-infi~lito monatomic chain with nearest-

n6igtbor interactions. Tho~aquatioas of notion for the displacezent

i.of atom n ire

U - V (u 2 u1 ) . (50a )

Uu2 - (L(113 u2 + Mi(ul-u2) (50b )

U, O(U,..+,u,_1- 2 u.), a 1.35c

vhero a and (L ar'e the coupling constants for bul~k atcms an& for

surf sze atoms, respectively, M Is the atuaic mass, tbe: double dot

1"tdoutv a 6e~oon tire dýrIv.t1.ve, aZ4' the surfacd atom~ is speci-

tied lyof a 0.

For an~ idfiuxito chain, evury atop,~a an equat.Ar± of ation

of the form of Eq..(SOC). The normal m~odes of vibration 'can bu

w~ritten as travelling waves

n U OX?-AiCvpn-wt)]

where is a dimensionless viave num~ber and w is the frequency <

specitiod by

2 (4cX)sin (CP/Z) .(52)

The vavo vector rp rzngos from -v¶ to +nT, so thato the aquare4-fre-

q'uoocies-range from 0 to 4a/X;

- IA'~
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"For the semi-infinite chain, we can obtain surface solutions

under certain conditions. Let us urite the displacements in the

rid form

u I " Ulexp(iwt) (53a)

u - U exp(-qn+iwt), a > 1 . (53b

Substitution of Zq.(53.) into Eq.(5Q. yields tho result

MW - 2Q(l-cosh q) . (54 )

An equation specifying the attenuation constant q is obtained by

substituting Eqs.(5-1) and (53,) into Eqs. (S5i) and (50b), using

Eq.( 5 4 ), and setting the determinant of the coefficients cL VI

"U equal to zero. The result can be written as

' ;here c (n'-a)/a. For a sur.gace iodL, tho real pArt of q must-j

- b* positlve. Such a solution to Eq.(55) exists .or c > 1/3 and

has tLh form q -' q •.i where q is real and vosittve. The Ire-

quency is now specified by

wn - [(2a/W) (l+cosh ) (56)

* and Is larger than the maxi-um bulls mode freqruency (4a/U)'. Thus,

for c > 1/3, a c surface ode frequency r'ises above the allowod band

* of frequencies of the infi-Pte 6hain. It should be noted that no

- surface mode exists when the surfaae coupling constant I' in OZ-

changned from the bulk value a.

it noxt-nearest neighbor interactions are In-cluded, the femi-

"infinlte monatoaic line2r chain still does not possess a prfaoe -mode

it the surface coupling constants are unchanged from the Milk

pit -vapuos (3l.)

Z. ~~
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one or two surface mod-as car. be produced, however, by suitable

changes in the surface coupling constants.01)

Surface modes can also be produced by changing the ma~ss of

the atom at the free end of~ the chain. This situation corresponds

to an absorbed atomn. For nearest-ncighbor interactions onl7, one

f Ind~s(N) that a surface z-ode exists provided

%hrer It' iai theo mass of the end atomi.

If the surface n~oupling constant mf has the bul,,k value a, a-

surface mode exists if MI1 < 9/2. This result hasý algo been obtained -

by Matuwda and by Asahi and Ifori uting thie trausfer-matrim.

The clnfsely rolnted so-attorirzg-atriz mothod has been used by-

lieri and Asah!~ 9  to Zre-at tho cas~e of two isotopic ImpurIT1Y -

fttoiss at the free end of a %zn~tomi-c chain with nenraest-neighbdr

%azt-ractibn.a. If the two Imp-trity'atoa~s bave this zaime mass H',

wj); arf~ieo modes txist if X~ 4 M(2-,rY/4. ihis ]ýroblev- has also

beon ~trozd by Xasrl and Arm~xnd~ who discul'scd one-dimensionial

maodels for argon -ýoudbnsed on krypt'es, and for carbon -=mnoxide

adsorbl cc platirum. Tha results for the l~ttor case agree well-

vitb: thlp:e obtalne8& isiiDg t thrpe-dimuesionsl model.

That ~e cbat~usIr masses or couli~ng constuata are r~eqie

to cauie aM vudat n ue the semi-inV~aite mnt~ ie2-

-hAn -ia dersazandable bA the basis o~f Ray~eigwz theoroa.(I)

Witbout such plarti-rbaticona the creation otf tbe. surlaaze co~rrspo-rds

to sittig onV q, :;ro- cegj--ii constuats zo zoro, :!, 2y'-'-L*

Ray~eigh2t - theora.-m-raust depress the u4=1 tl,ýj -ru~io.- ~'r

a n- Ilk.y~e~ l ocaliz>,0 =ode tuou-za a- fitarce, w4iý

* - -~s~ -
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cannot have its freque ncy in an allowed band of frequencies of the

inyinite'lattico. _Since the allowed band extends down to zero fre-

quency and since the surface mode cannot have a negative frequency,

there is no gap into which a depressed frequency can move and

thereby produce a surface mode.

(W). Diatomic Linear Chain

The semi-infinite diatonaic linear chain offers an inter-

esting contrast to the semi-infinite monatomic linear chain in that

a surface =ode is possible(9 without changing the surface force

constants, provided the atom at the free end is the lighter of the

two atoms in the chain, If Oon assumes nearest-neighbor interactions,

the equations of notion have the form

N -c~u 23 +,eu,,...- 2u23) Ji% _( 58b)

at u 4.+f,-u,_% j 2 (58c)m2 Jq-1 2j2-

where the end atom Is taken to have the smaller of the tvo masses
(30)m c U. A surface solution to Eqs. (58) exists and can be

written as

U2 -1 tol~1 m)~epit) (59a)

'23 U(-l)J(m/m)J exp(iwt) C59b)

where-the frequency w is specified by

- 2 CmtM) 60)

Tile atomic displacbments for the surfaco mdod in:z chsni of IQ atoms

are-shown in Fig. 6.

g- TheD norm~al modo- frequencies- ote thie peIoi diatomkic Chain

liei,1 In either' the ac-bistical bac 3 0~~ 1I.rtopia

*oe b-fcb -ocie 21 ind ,44Wf i
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3a.
the gap betvoen the bot tom of the optical branch and the top of the

acoustical branch. The semi-infinite lattice with a light atom at

the free end, hov'-ver, has its surfac6 mode, frequency within theI

"forbiddeni" gap. In terms of squared frequencies, this surfaceM

mode lies exactly at the center of the gap as shown. in Fig. 7.

The creation of free ends invvlves reducing a c~oupling constant

to zero. In accordance with Rayleigh's theorem, this leads to a

reduction In the normal mode frequencies. The surface mode In

particular arises Yrom an optical mode .oefrequency drops froia

the bottom of-the optical branch into the "fridr gap.

Surface modes -in the semi-infinite diatomic chain ;with nearest

and next-nearest neighbor interactions have been studied by Gazis

and Wallis. 4 0 Then a light atoia is at the Itee end, the surface

mode. srty be inhibite,1 by making tho-next-nearest neighbor cbupiiag

constant sufficiently large. When a heavy atom is ai the free end,

however, a surface node may-be induced by proper choice of the

Dext-nearest ueighbor coupling constant.

The effect of changing the mass of the free-end atom~ in i semi-

infinite diatomic chain vith nearest-neigghbor interactions has been

studied by H1ori and Asahi(7 using the scattering ma~trix method.

Defining Q - li-)uthey find that a surf'ace mode appears vith

frequency above the top of the optical brauch if Q< -~for either

n>9I or m.<K. F'or u e. , the surface mode vith fraquil-ricy Intho for-

bidden Cap morges Into the optical branch and disappears for Q< ~

'while for ai > V, it comes into existence o~nly for Q< 'i
(Y) Two and Three-dimensional Mosiatocaic'Lattices

P. osentikook *ellU rodal a

A r~hive~ramle natc-yamical moftl vb±ii

admits* f .oxziet aaalysii; is tUat. of-ftses a.

-:~~~ -S '-'-t
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cnId only nearest-noighbor intoractioni; but with co~tral aad

an:.-ucnrtral components. For thib two-dimensional simple squara

lattice with free boundaries, the equations of motion have the form

is 'rU ,kuJk)(1-6k'j).d C(u -U - j

+ G(Uj~ ,-~ujk) (1-6 I

+ r(U~ O,k+fljk )1- lk., K) (61 ~

for the x-component of displacement u with a similar sot of equations

for the y-component v in which u is roilaced by v, the central force

constant a is repiaced by the non-central force com,ý,ant 'i., and T

is replaced by a. As in Eq. (50) the lattive sito.ý %ra identified

-by, int6gors J, k each ranging from I to IN mind the free boundarles

are defined by'j-1,.N and k.,Y1..

Thc- exact solutions-to the equations cf notioni have the form

-U co(-)9 sk-)p'exp(iWt)

Vjk(62A)

.2 v - V cosQ-J)cpcos(k-1,)ýp exp(iot) (620'

whr 91'1YN cP_2rN and n,,n, are Intqgers in the rangI4 from

0 ol-1, incl sive. The normal mode feq~uencie~s are specifiod by

The normal m~odes of vibration~ are c1early all wave-like in qharal~cr

*and hatea frequencios vhSich lie -in the range 0 to 2f(7÷'r)/zi]1. No

surface modes, In particular, ino UYlIAgh waves, exib t for Mec tvo-

diznsonal Rsonstock-2{cwefl mo,". A cotnpletely alixilzr sitakioz

-exists for ;1ho thxrO-diz4Wsida&1 Rosenstack. Newell zo4e.I

~44 4
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The question arises as to why the Rosanstock4Nevell model

possesses no Rayleigh waves. The answer seems to be associated

with tho fact that this model is not rotationally invariant. I33
The lack of rotational invarianco shows up vhen one applies Eq.(43)

to the coupling constants involving a surface atom. Physically,

one can see rather easily that a rigid rotation of the crystal

about a surface atom will produce a net force acting on tha~t atom

as a result of the non-central ýorcos. This is a clear violation

of rotational inivariance. Alternatively, one may view the lack of-

Rayleigh waves as due to the decoupling of the x, y, and z equations

of notion.

(42)Ludwig and Lengoler have shown how to modify the iRosenstock-

Noelli model to make it rotationally invariant. They ititrodupe

additio~ial non-central interactions 4involving the surtace atoms

which r'.-store the rotational invariance. Thus, for the two-dimen-

sitnsal case vitb a free boundary defined by k'0, the coupling co-

aff~cients involving the atom (00) are taken to have the~form

i(0o, *10)- -( 4) 00o,01)- - (7 0) 64)

where the new ooupling coastant, 6 must have tbe value v./2 in crder4

for Eq.( 43 ) to be satisified. it should bo noted that the addi-

tion to the coupling constant matrix involving 6 is anti~symmzetric A

in. contrast to -the symmotric form of the bulk coupling constant

matrix. W-a also ob-"erve that violating the coaditioa of i-otational

Invariance coirresponds to the -use of Incorrect boundary conditions X

tiP
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Although the Lengeler-Ludwig model malkes possible the existence ot

Rayleigh waves, the simplicity of the Plosenato.ck-NewolI model

associated with the decoupling of the x-, y-, and z-componeats of

idisplacement in the equatlornE of notion is lost.

Surface modes may rise in the Rosenstock-Nevwel1 =ode! without

the Lengoiler-Ludvig modification if isotopic impurities with suffi-

ciently .light. mass are present on the auirfaco. The two-dimen.,ional

monatom..- c ase hns been investigated by. ..sahi and Hoi(36) WhA~O have

considered the efleut of replacement of oither one or all of the

host atoms in the surfaco raw by -sn inpur'±ty atop. or atoms. These

authors prEcsnt the condit~ions for the appezrtnce of a surface =ode

above thQ bulk continuum in terms c~f the zass defect parameter

Q-(M -U)At anid che force constzfit ratio VaO. This work has been

exteuded by Pukushiza. (~~

b. Models -with Rotationally lavariant interactions

The simplest way to insurea rotatianal Invariance is

to choose individual Interatomic, ixteractions vhich are rotationally

linvaiant. This can be accomplished by associating the forces act-

iig on the displaced atoms vith changis in the distance botwut-a

atoms or the angle between atomic bonds or other quantities vhich

reuaiki i1varinalt-under a rigid body rotation. A riiJmple appliination

of tha id as waciade by Geazis, aermza, and Wallis~ 'aho treated

the monatomic simtple cubic lattico vith nearest and next-neare4,st

neighbor cealtral forces plus angle-beading ititeraetions javolving

pairs ol nearest neighbors. For this'-case, the 041atioas of motion

7 -4. ol a bu~ll atom can 1)6 vritten au

%b

.V.

14-~
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E, ((Uu-2

+ ~ [c6 (v4 6  ~ )

+ 2Y (r (U)ý

whiere a and are the c'entral. coupling~ constlants, yis the anglL-

bending coupling constant, and the other equati.ons arise by cycl-

iclypermuting u~v,v and t1-i increments 6,c on the in4iaez

The equatiQns of motion must be augzmoated'by boundary conditionv

In order to bring in thiý -oee f -the bufce .(001) surface

oharact-nAzod b~y a-0, the boundary codditions IAve the fom~

+Y [2('x -40

+y [2(v

t" U

06(u ,~'

-V/

~Y.R, .- '
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1te~uha~ll*jolye Eqs.(GS "d. (66) ia A manner analogousl to that

-. crplhyed with the cubic continuum. if we assume aso7utioa of thet

form

(c~~w)~ 5 e(ThVW) exp &%1n41¼1Vt,92z1+wt)-3 ( 67

-and substitute tblis-expression into tqs1( 65), wz get a sot~ot

lioeir equations in U,Y,W whose determiitaot of ocofficiouts oust

vaniub:

4j (0* -2 1;05~

Yar a given set of force constants and wave number compontents q1 and

q2, -Eq.( 68' constituýtes a relationaSiii between t"* 4requentcy txand

the at-tonuation constant q. Since it to a cubic equaLtioa in casth 4 ,

on v~ ollve for three-vlviize of -,r given _it and-us6 thee& to

fora a s~dlutiqn whc Ststieg the DobuCary conadititn; A i;U~fAoe

wave- outis -only it the real part of each T4 tqur4int.$l1~

do ngreatot! thav zetros

Wetow "oak to satid.ty tbe- boandlary couditiaas trseOA:ý C4

fioluitiea of tb6 -Iens

* vde , ~a ~are'tb .pproprivatG cofpctors o,2 IdlJ ibstktpalh

~~44a, -,-t4-

t~kminnt*. o~eti~ton be tef,4

r -- fi

-. Y- -*E - -
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The force constants a,$-y can bo deteminced by mating a best -

fit of calculated bulk~ pliorou disper~ion turvý4s tb eperimental

data from inelastic fieutrond scattering or by fitting the elastic

constants. The latter procedure ccan be accomplished by expawcdinz

the displacomont componouts in power merics about those :for tho

site t.,u,n. For example,

U ~ a ~r~- + ac

2 f62a 2 u a 2 2
1- + 26c +.
-( b7 axay C 2

Substitution of these expansions into Eqs( 65) and (C3) and re-

tention of teras only through a2 -yields partial-differential aqux-

tions which are completely analogousi to the continiuuma eq~iatikons; of

motion and continuum boundary conditions, rospectively. Copparison

of the coefficients of corresponding terns then provides the follow-

*Ag Identificatiou of the elastic constants

- c 4 A~.(20+4y)/a .

A -Calculation"'* has been carxriid ort with the above =odol -

St s v~ a~ea propagating in the U03.G direction oa a '(001)

swaf 0- Za c1oasidorod aonixa ; Thme 'resul~ts, gli-w-a in

-Vx4ablkt Uts' 4erpamir oi the Rayleigh waves expec tod :i
'A U*ttiar theorl., Anothe i trztn faatura 4in the di'vergencl of k

p . -~v

zw 
7 7 S;~-

-5-1-e tz

:7 - siA

77b. 7 *,~7 7 - * a.
'V - 4. 7-

577 .75 .



-43.

one of the. attenuation constants alt- a critical wave numb-er fp- 1.75.

A (P this attenuatlon constant avitches grom a real value to a

complex value of the f orm q +i1Tr

Another case vh&-ch has been troited vith anglo-bonding inte*t-

actions Is the monatomic bo.~y-coentared cubio lattice,~ Phase

velocities and attenuation constants wqre ca1.citlated for surface

vaves propagating in the [IbOO di.retica of the (001) surface of

2vanadium, wbich * 4hibits ordinary Rayleigh waves, and iron, vhich

it~ 'xlibits geaoralized Eayleigkz vaves. Digpersioa oi tho phase vel-

ocitios vas 'etablls -!ed, but. ao dive.-gence of an attenuation constant

was ounGin eit ir cnISO.

lsiug -tho poceftr4 ddscre4 ibo 5 Kaps ;10die

teo -iiif Ir -to MOTIOatomic square-- attice 'witih nearest-and next-

-neareat -nei~hbctr 'centiral .1orces for -the ti t'ation where a hom~ogeneous

isotopiir> iraptlfit layerý iii retent o&( tbe surface edg.E on

that tie -impurity !ajer h~z little affect on longý-vavelgngth 1Ray~oigh

Z odes. Tbip is to be expected becausen long-waveleugth R~ayleigh mades

*peftetrato deeply into1the crystal. At the Brillouin zone boundisty,

bovoorthe Rayleigh inodes are loalized vi thina ticlerr

-so ol -the surface, "nd they should be gn,*11vantly affec~ted by the

* mprty 'Myer. Thit Is juist what Xdplau found. ea. sufficie tly

heay npri~-aoni ~-ss te'rer zaa two Uvi-frequency surfAce

mode#, one of Which is- the RaXYleiuh qbdo. Astba IS-Purty Rats

#ergases, in suacesai a theo vxtra, low-frequency Wurfai& m.ode dis

U~pea3_r9, hich-frequeai, surf-Lco =o44 &ppeixt-aboye the allowed

-b~ ot requenclos, the -Ralip- 'wife 4qsappearx and $414y

eecS d ahigh Iq~6

- 4-
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Surface modes of vibration in monatomic faco-centered cubic
lattices have been investigated recently by Allon,*Aldredge, and

(46)
Ma~tte who assumed central interactions of the Lennard-Joces

63-12 typo between all pairs of atoms in pidites up to 21 atomic layers

thick. Thbe parameters charkcterizing the pair-visa interactions

wore taken to be the sam~e at the surface as in the Interior of the

crystal. The model. may be considered appropriate for a slab of a

rare-gas solid.

Allen et al( 46) first considered surface =odes on a (1ll)

surface with propagation in the rKQ1ilO) and 1'9([1123) directions

as well as in th~e IM direction along the edge of the Brillouin zone.

By solving Eq.( 49) on a computer, they found the expected dispersion

of the Rayleigh modes. They also found additional surface modes of

aon-Raylcigh typo 'whose frequencies lie in gaps in the spectrum of

the bulk modes cis shown in Pik,. 9. The atomic displacements of

the non-Rayleigh su.rfaci modes are primarily pirallel to the

surface, whiereas those of Rayleigh modes are prizarily porpon-
- (47)

dicular to the surface. In a second publication, Allen et al

report the existence of surface aa~den on a (100) surface which

havq the, same frequencies as bulk mcods with the same value of

the two-dimensional wave vector p~areellel to the surface. -We baixe

already e",countorod surface =Odes of this type in the contipuum
* ~* z

theory of materials exhibiting generalized ftyleigh waVes.

In a recent publicatioit, Allen, Alldredge, and Da~etto~

have-extended these calculations to the bexagong; close-pgcked

*crystals, Hlera~ again, t~hey ;ind. surface smodes 14~ jps in the

bulk froquancy 6ec6trum..

-~ -, - ----
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Whose same authors have recently ziven a general forau-

lation of thp surface vibrational mode problem. They discuss the

It circumstances wnder which the displacement ellipse of the particles

lies in the sagittal plane (surfaces with "axial-inversion symmetry")

and when surface modes can have frequencips ljdng within bulk node

subbands.

D•tallod calculations have boon reported by Allen et al )

for monatomic face-centered cubic crystals with (111), (100), and

(110) surfaces. They find a number of surface mode branches for

each surface-five for the (Ill) aurface, at least nineteen for the

(100) surface, and ten for tha (110) surface. These results are

probably dependent to some extant on the modal employed - inter-

, •-. actions between all pairs of atoms through a Lonnard-Jones potential.

Some of the surface modes found by Allen ot al(0) are primarily

localized in-the second layer from the surface or oven a deeper

layer, rather than in the surface layer, itself. These various

surface modes can be regarded as "peeling off" in succession from

the bulk branches.• The effects of surface forco-constant changes.

"were also considered.

Some - calculations emphasizing the long wavelength region

"have boon carried out by Alldredge, Allen, and DeWette(51) for

the (100) surface of a face-centeret cubic crystal. In addition

-. to.the usual Rayleigh wavos and preudo4zrfaco waves, they rind

an additional surface vave propagating +i the [1103 direction

which ispolariz;Z shear horizontal. Alldredgo has shon,
S.... + '++:'+ •however, that the attenuation 2~aau+

Sconstant.. - k and hence vanishes

-C P I

C -In the long-wnavlength limit, so thi. n~ode in not a Rayleiglr'typ.
A- - *tix'aco wave.

S*.- .

,$ •. .'++:t .qw -- .m>- Ž ---- - -
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An I-Wrestigation of size and surf *ace effects on the lattice

dynamical properties of small particles b~as been reported by

Dlickey And Paskin( 53) ) who used the Lennard-Jonos potential.

and various crystal shapes. The trequency distributions for

bulk, surface, and1 edge modes were calculated and were found to

exhibit poaks occurring at successively lower frequencies in the

order given. -

The case of an isotopic impurity layer on the (1ll) surface

of a face-centcred cubic crystal hias also been investigated by

Allen et al. (46A7) As in the vork of Kaplan (45 ) they found for a

light impurity lag~er that high frequency surface modes may appear.

above the bulk continuum and that the Rayleigh mode may disappear

at sufficiently large values of tbe wave vector. This uork has

been extended by Alldredge, Allen, and Det.-tte(M) to the (100y

and (110) surfaces. For very lig*ht or very heavi adsorbed

particles, there are three-principal surface-mode branc?.es

associated with the adsorbed layer, but for non-extreme mass

ratios, the separation of the principal surface-mode branches

1s not com~plete. They find tiat heavy adsorbed layers enhance

the localization of Rayleigh waves and that light layers have

tho opposite effect.

Phenon frequency distributions for layered structures

O~havo boon studied by Allen, Alldred~ge, and Doeatteo5 who

find that in~terface effects are smallcompared to surface effects.

Some :Pezzrka are made concernint superconducting transition

teaparat~urs in thin films,

4,
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A troutmont of an Adsorbed layer on the (001) surfacos of a

simple cubic crystal has been given by Dobrzy~ski and Mills(5r6)

using the Rosenstock-Newoll model. When the naass~ratio of ab-

sorbed and bulk atoms is less than unity, they find localized

modes above the bulk continuum whereas If the ratio is greater

than unity, th~ey find localized maodes below the bulk continuuI.

Nevel] model docs not exhibit Rayleigh waves.

Wodols i~vch involve central forces only miust satisfy Cauchy's

relat~iod, c%,- .4(cvbic crystal, for example). Many metals do not

zat tsfy Cvc~iyls rcltýion, so non-central forces are required for a

. trriir 4vst lpý:on of their lattice-dytramical properties. Recently,

Ywue2zr tud &III~e have studied surlace waves propigating in the

t~~onii tho (100) surf ace of a monatomic fac~e-centered

cubic crysx1Ll vzn, nearest-and next-nearest neighbor central forces

* plus non-central forc.es between nearest neighbors. Rotational in-

.variance v34 prej~arved using the procddure of Ludwig anid Longaler.~ 42)

Uusser adRiedor fudthat tefqenesoflogwvent

Rayleigh waves IýRre signiflcantly affdctad if rotational invariance,

was ignored.

The of~fect of changing the value of the coupling constant for

- - -the central interaction between a sur'face itom and its. nearest

- uoeigbborg in the second layer has beevstui.ded by Munser and Rieder~~

-5-
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~7
~ - - - -

OV-



using a Green's function technique. 11 the surfac* cotiplia;~ constant

is smaller than the corresponding bulk value, a secooid low~-frequency

surface =ode may appear for wave vectors near the Brillouin zone

boundary. The Rayleigh mode freqjuency is also depressed. It the

surface coupling constant is larger than the b'tlk value, a high-

frequency surface mode may appear above the bulk continuum. These

resul,ý are antirely consistent with Rayleigh's theoremi.(

Musser and Rieder also 'Lind surface modes with frequencies ivithin .a

gap in the bulk continuum.

Soveral workers have studied localized modes associated

with icsolated 2foms; or molecules adsorbed on crystal-surfaces

using throe-dimensional models. Grimley (58 ) considered an

adatom. on a (100) surface of a PRosenstock-lievell model of a

simple-~cubic lattice and obtained an. expressioii for the localized
mode frequencies using the Green's function t-echnique of Montroll

and Pts5) An adsorbed diatomic molecule and the inter-]

action between a pair of adatoms were also treated. Specif ic

application vas made to hydrogen and to carbon monoxide ads6-1-,ed -

on platinum. The interaction between two adatoms has also been

discussed recently by Cunningham, Dobrzynski, and UaradudinS60)

A problem related to those just described -namely, that of

an isotopic impurity atom located in or near a (100) surfaca of

a simplo-cubic l.attice - baa baen investigated by Jshkin. 6

IP
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9. - -The modal employed corzsibts of nearest and next-nearest neighbor

- central forces with the force constants chosen to give elastic

- -isotropy in the long-wavelength limit. Utiliztng..tha Moatroll-

Potts Grecn's function technique and by assuming that the local

- mode frequency is large compared to the maxirum frequency w.x
*of the perfect lattice, Ashkin obtainod the following expression

for the square of the localitod mode frequency

2 a1(w,t) aL2&(t, 4) 623 (cr,,t)2
3 2+0 ) 7(CF, 4)+ +f2 OuX 7

Where a denotes the polarization of the localized mode, 4. specifies
the site oX to imupurity atom, X - M'AL is the ratio of the impurity

and host atom masses; a~nd

&#4e,) D D UA) (74a )

L'4tp,,u D (4*) (44)74b)

* - 3(c,4) S S D (4.4')D (4t411)D (V'14)

In Eqs. C74 .D~ (Ut) is an element of the dynsuaical matrbix~or

the crytal wi-th k suirface but witbout .%Mo impurity given by

Ds 5  i) ACLAO* (U-1) where *( ')Is an element of the force
icunstsat watrix.. Specific rosults are given by Asbkiu for the

model mentioned above. Qualitatively, the localized-mode,, which
is' tzriply de~onorats2 if the imipurity is' in the bulks, iii split by
thi-surface inoasnl o~era 4od polarfzed psrpeAdicuiar

*1 .4 - -

-y 
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5P0,
to tho surtnco and a doubly dogonorato modo pol asizocI Vnrtllol to

the surface. As m~ight be Oxpeeted, the localized modo frequency

is decreased whien the impurlty is in the surface layqr. Thus#

for X. - 0.2, the perpendicular mode has a f~requencY 29 per cont

lower and the parallel modes 9 per cent lower than the local1iza&

mode froquency when the Impurity atoin is in !kie bulk. For this4

case the bulk localized mode frequency is~ assenti~a1ly achievc4-

when the impurity atom is moved just one layer inward "rom t~e

surfaca.

.The workc of Ashluin has been extended to body-4ýenterecI-cubiia'

lattices by Dobrzynskl. who used the model of Clark. -0azii nnd'

Wallis63 to consider both single ada-toms' and an adlaiyar on a

(100) surface.

A-theoretical investigation of vibrational edge modes has

recently been carried out by Uaradudin, Wallis, Mills, a~nd BallarduJ

who treated an edge of a cubic elastic medium bounded by two .(100)

fates. lfbr the case-of elastic isotropy with the Lan.6 constants

X, &a equal, they found A localized edge mode with speed 0.9013 Ct
'compifred to the Rayleigh wave speed of 0.9194

(vi). Two- a~d three-dimensional Diatoraic Lattices $hShort-

range Tnteractl*)ns.

Ordinarily, diatomic crystals have Ionic characters

and the lonjg-range Coulomb, interaction botwoeemthe. ions nust h-a

tak a into P.Ccount In a lattice-dynaaical no"e. Sone qualitative

feztiurms, howv.%vr, may be at-,ded using nodal with ony short- :;\.

~-iýj
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ran ge interactions. A general formislation of the problem based an

a Green's function method was given a number of years ago by

Lifshitz and Rosenzweig (6)who nioted the exist'once-of both scous-

tical -and op~tical surface Aodos. Wallis 66 later studied the

Rosenstoek-2Newd1l model for finite two- and three-dim~enssional

diatomaic lattices of the rock-salt type using both a perturbative

procedure and a Green's function procedure. It was found that

band of surface iaode frequencies occurs in the gup between the

acoustical anid optical branches. Theise modes are closely re-

lated to the surface mode of the linear cliatomic chain with

nearest noighbt~r interactions. Furtherm~ore, for the finite

lattides considered, edge and corner modes wvere found in which

the atomic. displacemonts are localizod near edges and corners,

respectively. Typically, the frequenciis of edge modes lie aelow

those of the surface zodos mentioned albove and the frequencies of

corner modes lie-z below t~ioso of the ed~o modos. 7his ia physically

-easorsab,3e In view of the decreasing nuaber of interactions with

-naighbors; possessed by an atoAi as it chian-es from a surface atoak

to an vdgo atom to a corner stox.

~ 4' A~rf ace , dod cz.a~ulation usibg-;; rotationally invariant

miodel for a rock-salt, type cryiptal was;.-car:ied out, by Wiallis~

* 1Hillei and Uazadudin 7) 'who found a-surlaco'braurth In the gap

j, betwoeu the acoustical azd optical-.braiidhes,

44--
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(vi.Three-dimensional Diatomic Lattices vith Long-range

Inter~actions.

Since diatomic crystals typically have io~nic character,

a realistic lattice-dynamical model must Include the Coulomb inter-

L~ctionv betwveon the ions as well as interactions associated with the

polarizmbility of the ions. The long-range characteor of the Coulomb

interactions ma~kes the calculation of the surface inodo frequoncies

somaewhat difficult because the eftects of the surface are not local.-

ized within a few atomic layers of the surface. Furthe'-more, the

possibility-of retardation effects associated w).th the plebtromagnetic

tield .introduces an aspect to the problem not encountered when only.

zbort-rango interactions are uonsidered.

Te can formu~late the surface mode problem vithipoulomb inter-

actions by simply noting that the coupling constant matrix

* (~,t~')now can be written as the. sum of a Coulomb' part and a

s~hort-range part:

The Coulom~b part has the form

UUXI 0

whore .,q are the electrical. charges on ions of type n~l

v*reOsotivoly. Thro short-range part can be treated in terms oý' oentz'al

forces and angle-banding forces as v=a done earlier. the calculation .

1 ~ ' ;"'6
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of the s..rfaco %ode froquencies then requires .he solution of the

secdlar equation, Eq.( 49), wsing the coupltag constants specified

by Eq.(75 ). A major task involved is thi evaluation of the lattice

* sums in the Coulomb contribution to th reduced dynamical matrix

indidated in Eq.( 48).

Upon solving the secular equation, one obtains acoustical sur-

face modes which reduce to the Rayleigh vaves in the long-wavelength

Slimit, Of more interest in the present context, however, are opti-

* cal surface modes which show sigsificant effects duo to the Coulomb

Interactions.

Fuchs and Kliewer (68) carried out a calculation for a slab of

,n NaC"-type crystal with a (0'01) surface for both rigid ions and

polartzabl ions. The short-range interactions were taken *to be

nearpst-neighbor central forces. Fuchs and Kliewer neglected the

-• changes in the short-range coupling constants and the relaxation

of the ions neat the surfaces. In the limit of long wavelengths

(le small compared to the reciprocal of the lattice constant a),

"the lattice sums can be replaced by integrals and the equations 6f

motion becomb a set of Integral cquations which were solved by

Fuchs and Kliewor. However, a simpler prdcedure, as pointed out

by Kliewor and Fuchs (69) is to treat the p: iblem macroscopically

in terms of Maxwell's equations and the appropriate boundary con-

"" ditions. The effects of retardatiun can be included in a straight-

forward fahbicn.

Consider a slab of thickness L - 2d with surfaces normal to

t tho z-"orction at z - *d. The matorij1l i£ assumed to be optically

isotropic with a dielectric constant E(w) taken to be that af the

bulk readium. The olec trio acd magnetg 'vectors are chosen to have

fsfomof planw wavoa propsgAtting alo6ng the -svrtace withý W.

wtrk and f-requency v:-

- -, e- • -, -,

-S.,1 t,

V-.,4, ,4 ; . -A . . A . . . -S.....- - *,%4-_.



B B (z) oxp Ci(kx-wt)] 77 bn

F~r this situation~, M!axwell's equ~tiohs docO!XIlG1 t-*e equations of

interest involving XrCz). Ez(z), an B MI -upon elmnaing-y

osne obtalus the pair of eqtsations

dz~ z L kE (z)(T )
dzx -

Insde he atria, teisolutions fora uaewvebnevrt

A~z).Z -&Z

wneie ~ %~ 2 f/c 2 )EU (19b

- ~ (son

-00 f i)a

S 2 21-

Tbe bowry coa itloua that &S-Z) ana _V ",) be CQintiauouc at,

-*4 ýyislds - -- '~~

#tiI is Ihio OsoT~zto xrolgtin for~ the surieAo. phii ~optoas, iX ,
T4t VAY 40e or5~

4to~~#~I~ I~i~e~ei ~ I ma~be aoto tht fo th

19FOidC ý0&99 k V b x;P491? ZcW U Vh#ini So B - yz)ka
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*To combl1ete the calculation, e(w) must be spebififed. For

Cubic crystals Of ftes rooks:alt or zineblende strez Lute, we have

E~w) c.{~ywi/4-w2  
- (84)

-where 0-. 4nd wL~ars tho lizitizig long-wavelengrtt lrequcnciee of

transverse arnd longitudinat- optical phonons, respectlively, and i.0
is the dioloct'ric constant at frequencies large comparcd to (LtLut

small cowvared to ilt3rbafld electronic transition frequorioies.

The dispersion relations obtained by 6olving Zq.ý. ( 83 ) Dud ( 84)

-. - for several thicknesses of LiA are shown-in Fla. 14. For a given

thickness, there ~are two surface modes cotrepodir,_ to the two

- cu-laes'As L,4~ the two wadeas qoalenco because the Cotsplino-

between-the trtadbaksraediaears,- The modes start

on. tba lighT line, w - k at -w rise rapidly-. and t~hen f latten out

-aAd appioaclt a 1li~it tag Tirequency:given- by

viattIs tha-Strtic diolectri; constant. ror -a very thick slab,

L > c/ti -tke dispersion relationi for -the mosKfcerwdes can

to -. i

22 2

-<yr ~h sseri vtor of the surac *vtazodftu In thz eoti

..- ctyi 3~~ can.o c.r.t, an ~-rdher _---'--- allipldt' =

-- ic-the zegtta W, 114. M~sCtpe appprcnco&a iro a rA C as

ýr" ebm ~i nea~rly pol-arizd~ h dirc-.

Z~ f2~t.
t .p fpola~x Sincm thý -yartico -tplcmet a" ro

-ktk -R -)-- Oip

lip.

,~- -"AR

z
4
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)Nliewer zodes are transverse in tha sense that v-u 0 and that

at k -w.Vc, the modes are no lov.g&r lac~ifflzeii at 'ttLe surfaces.

Tho surface modes just desezibed are non-rAdifltive-mode-sf

Thtfel r drop off e):poneatti,41ly -otside the slah and do no t

L~teract direatly witb external radiatiocn. Other siirfaoo modes -

oxiizt, so-called 7ýadiativo zoe.0) with itcon jor outgoinag-

waves outstLde the crystal. These iriodes are not tme norwal modes

an~ hglydi~d even when E(w) It veil. Vie f requencles o!

the radlati-e modes lie above the light line w,, A4n contr-ast

to the nonf-radialkive todes which li6 belbh n-~is 1i4ne..

Aft-idepandient traatmer.,t-oll !ho op~tical 7iode$ of vibrati~n *I

ioz~ic crystals finite in ane or more d' wisipf.3; 'Nis b,-en gizil by

the results of Vuchs and Movear to &Ytrar f iisoe Shpeei--
usiur the zli*~e assuaptions as Fuý-hza andý XCllýr. XIn zS-t

a slab, their results agree with tl~oae 6Z- r-'vq;s a~L~t ¶ 1

tho case of a ophore , the surface- modes -fal iuite. wv -t

so-c&lled 't electrto odes," have x a4iaI comprien -0- thie

-uotia vector and have frequeivierf-zpaft_

VU ere j an~d -haxV upherica1 lifs*;. 4adk,~ ~ i4S

ko E~ ~/C pa - k-- E h ilecetrk onci

tbo aphore, nn-& ýdý~ etl~ d- a is- the rad~ise. ~Tie ~~

zetic 1odes,' ofi the qtý'Or hand, tiiv o, -:r a 04oon oi b'

0"5 -

T:1 ,- --- I
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I n the non-retarded 11mit, the surface mzode frequoncied of the

electric type are

w 2 f+E~(+l)/.I ~- (89)

whore Ea and E,. are the static and high frequency dielectric con-;

starts of the sphere. The amplit~ideis _f vibration v~ry with dis-

tan~e x I xor, the cenlter of tbe sphere as r"-* The mode t,1 is

* tbve oora a unllozrm mode whi4h has beens studied by bhi.

since theme -iz ~ arsopic electric fiold associated with

suftae otical. phounons of !hp Yixchs-ZlIewer type, one may expect

teaat theise zodes rwill Interact with any free charge carriers
has ~ee sh~ by(73)

-presazit in, the crystal. Indeed, it ha ensK1 yiheifets
(775)

14 iniu and Quirn , nd by Tallirs-and Brion~ 8

-s t the sufface-optc -ooscouplo t& tho surfaco pBSfB

r'o carrir inL ziz.le p'raboiie e~excy baud -one -an util±ize

the vr(ý-ourru5 Ftý±edi -above x.csPt 'that thv diele;;tric constant

.1V~ieA b7 FA.- i (a, Is ropý'.acod by

L~ 90)

-o vR6 A ~ in ~ ~ t~~~e'oiy I i the cazrrier

;;;fr itf -ihn~d -- ~thei' o~fective %sas -a th* ic-rtado

34 ~ ~ ~ -eltveisp xpi~gzy*iou cazz r.~ !r tt4e coupled

~~ ~ 1~n~aem~,T0-. vgýry th~$ u, '~

i-i- J- --

-i _Ug, ~v~(~ and --a &giv~il

;e7:

.v/4



is the surface plasmon frequency. Experimental verification of

Eq. ( 91 ) has recently been reported by Reshina, Gerbshteiai, and

?4irlin (7)for n - InSb. Theoretical discussions of the effiect

of an external magnetic field on the coupled surface m~odes bas

been given by Thuppin (4 1by Brien, 1Wallia, Hurtetttin, znd

Burstoin (78) and by Chiu and ýun.(9

There are a number of rather interesting payr-ical pha-mmomna

associated with Fuichs-Kliewer surface modes. Yahan~~' btas shown

that the familiar problem of image chargee can be digcusL-ed in-

terms of surface .polari-tons. If a sourte charge Is located near

the Interface between two i.nsuiating dielectrics or a dio,ý C'-

and a vacuum, the resulting Potential field can b~e represented byv

a sot of image charges. According to a'an, s1=* poj~iin§

mazke a notable contribution to the iinato jeargex; 6nieesd, thby

giva rise td the entireý polarization tield if the source cbai-ge-

is outside the dipea~trio. -

A second phenomen i& associated with surface polar~tors is

the Van der Waals interaction between solid bodiss. It 1is been

shown by Van Kampen, Kijboor, and -S-a.m (non-i--etar~de -cs- n

by !Parluch ( (reataxded case) tha~t t&.Van der Vaals intermctonML

energy is simply the 7Aar-pO~t eýnergy of -the surfa,4o pla?1.ttollo

That only the surfa~ce nýodes. and-"!; tho bul U1 eS -Je-ivyolvot

is c2.ear becaiiso on".Y the -mad~oes fbv ioldsL _ýot-en -

side the uedizi.

a Xj--e S
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1,t will bo rocalled that Fuchs und Kliowar =ado two imtportant

approximations in their treatment - namely, they neglected the

offact of the surface on the short-range interactions and they

assumed the wavelength large compared to the lattice spacing.

( 83Lucas has avoided the first of those approximations in an

investigation of optical suirface modes in thin slabs of an NaCi-typo

crystal with (001) surfaces. Honrest-sioighbor contral forces were

Assumed for the short-range interactions, and the absence of neighbors

bvyon4 the boundaries was taken into account in the equations of

maotA'*n for the aurface atczms. However, relaxation of the ions near

the surfades and retardation wero neglected. The ions wero~ assumed

tob~rgid, nod the appropriate Coulomb s=9s vere evzluated in

j714;84 -hc- 0c 0 Ch lattice plane co~tain3 equal

nuzbers vft- v abd regutivo $orz ~i3i in ov,,rall neutral, the

kataeractions bet~tar~n plamss decrease nzpones~tially witIn segaraetion,

--and the swvr~ne of the intorp xar.t in;wraction& is theorefor

1.ucss r..tried out i~p~t~ific calculazions only for 0 where

rpirjillel to the suii c.
vfac -mod (d il3coat parlle to-~~a wv et

K. -~~~ -~~~ 1oun~t a troamsverae- 6ptical &~~rac ~oe ispnietpral1o

the iZ"tsta with _ rqecyvr ,1 Ul elow that *i the taa

~ optical hk =ft* for k (.This result, ls~in -ontrzst-11;

_tba .~h 2nd Xlrwar *-4:r found that th --asverso -optical

4r zdo is not ocalsmie4; at th suita-g for 0. 'Min

di~feane , ibutable +t6 tOb inel4mi-on by )ýicaz of corrac-tioms

-1t9 trtrng ocea sta -on s4izac Wno Aue to their

- ~-

- A



optical surface rmodas (displacements perpendicular to tho surface)~

for k* 0 in agreement with Fuchs and Kl.xower.

A more refined calculation for the MzC1 slabrwith (001) sur-

faces has been carried out by Tong and )4aradudin 3) who

assumod nearost-neighbor central forces and Coulomb forces bot~6e~

rigid ions. Proper Pccount was taken of the number of short-ronf/i

interactions of surface atoms, and the possibility of changes 'Al

the intorplanar spacing near tho surface was included in ths forzu-

lation, but rejardation was neglocted. Calculations were made icr

wave vectors k Pcovering the entire two-dimensional first iBrillouin

zone.

If we' neglect the doubling of the surface modes due to the

presence of two surfaces, then we can characterize the results

of Tong and Uaradudin as follows. For propagation in the [1003

direction, thore are four surface branches. One liranch is.

acoustical in character and correspond6 to Rayleigh waves. There -

Are three optical surface brancheu. A higb frequency branch lies

botwean WLand wTand approaches a frequency somewhat below w L

as k.-. 0. This branch would be significantly affected by re-

tardation. A low frequency branch lies below the bulk optibal

mode frequedcies for small kapproaches a frequency just below

WT as k -0, und is polarized in the sagittal plane. An inter-
T p

mediate frequency brundh h~s-the sa=m fwsequency at k 0 as the

lim freqeu_ýncy branch, but rises. into the regio~n between W£and i

and is polarized parallol to the surface. Tong and )Uaradudin cal-

culated the d viation of the slab frequency 41iatribution from the

bulk dlstributiou _vnd found sxronouncod pceJks corroesponditng to tho

surface brainohes.

-- - ee, - 'ýe -



The ~ 22 ime tiaons of yuo-es 4iid Xllai~er and- of Top- a'~ 1~rdu
do -ent lead to an eatipx-y eo~sisst~nt p,ýct-,re -of -he surface ppt~caa

modes of ain Ionic 0't 12£1b. 1"the pronliM of recono-11,ng theso

results h;ýs been ;ind~xtgker byoie anTz,ý -d by Cben.

Al~n l~dxi'ýgR, We- D cte(i The foilic-ing PIture

~ h~fnix F1~ -i~k±h *-r -nc o Tong

*aad )gzrdudin SPliU as k C in~to two-~

Wi. an th~e Otter- *T. - 9SP Are- tho 1-41 K-iowbr modes. (TIong and

-Maedu~iin had not U..Cs a Sufficienitly kmaial k to r,4vaal the aplit-

- tng) f ear k- 0, tih, FUcbsK .=r mod-c entor tha:i~ L n

~ntnu R~d~c~e* t ~4~' C'_ udoeýUrface - #-V*csý "Mue lot
-- feUI;* brvnu-vtb o ulh± rm iistldl bulk ~n±ui bu ida

-7 - t n i u m a o t m d a
totn.iIiOu~n sosbudr n o ixr -obZr~inch.

__ loa otCongo14 t,- b:11 modes: *vd remskins

P111- euoSU f#0Q br&4h o14- toC thP Zcxzo bmuada~v.

V.", ~ Oagtir au avao 1ound A :rr of suigace rmedes V;~gPS in

Pe bulk frce wven SP-tox' : all wýv -1veco. -als oth Ier suocipte

ituddl-~~ ~ ~ ~ r Ap0M g z-o r

opticlbrnchs Well 4~it~ i- ro, io" the~

PtýOdgu.tiafac wgoIO aoi -Vo~,e4 't lhe other) saiaace of l4t.P

structur -'
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The problem of surince m~odes in a *nzi-infinito roclcsalt

crystal bas beet: tA?--lod by Ach=ý and B~s.hf 0 using the

-6 .,ttering ztatrlk mt~hod. 11owvor~, thoix r~esults appear to be

In orrorkl)

Aotbr-tweeratical investigation of the ionic slab is~that

*2S-il and Firsov ~ who I~und 24 surface modes in the

r ong wavolengtb, unratarded lizzit, of whiob 12 ded,_y slowly away

free tho surrace (like Fuchs1XLiewer nodas% avd 12 decay rapidly

within a feav lattice e ,i-eftbe surksco. The relationship

-boetlkezz tho.se results Pand those, of otber vork~ra h~s not been

ýU~ll _e!ýtbl-! hed.,~

5 -arface- 'Wavdi in then -Presarteo-o -Socon4 Souind

ýgaonui aound - i.e.,~ prpp t1iii 4spzarture wavos

bezs lonig beeh lmawh In liquid hliu=-*sd -hasre ntl y boon ob-

se:frvad in solid halit S a- _n4-F A~n investigation

of susýý_ce affoots has been -trrv -ott by, 16iffO ( 95)wocn

-. - stdored tbe ~uplinl-v ~ ticle tave-o and' Atelspora~ure waves

through the ttteria" expansion. lqt asgi od a sozi-infinite

_+ 44i~Si corltinfluu and- qbtinec two surface waves, one-

cort8po~nd~n to tho- Rsyleigh -v-V- and the other fiaving a very

slow# vrwlcýity given b7-

VCT) t

eh - the thermal expansion coefficient, p is the density,

Sis the te~parsturo, C in t06 specific beat, 84,& at and ST are

the rpeods of bulk longitudinal, transverse, und second sound 4

~ P As-'- ~ '- 'Nwaves, an-Oi constant on t1L ore ofuiy.lfe5 AQ

wave to not sismply a Surfaco second sound waw,, trat a coupled,-

Partils-teoperaturv wave.



63.

a SURFACE SPE,-TFIC HEAT

Within tý- harmonic approxizzlatin the specific heat Of 2

crystal can be vritten as tho sum~ of contributioam from each of

the ai norzal modes of vibr-ation i; the form

C-k ja (j) escb 2(ih~ 94)

where 0 - (ICBT) and w.is the Xrerquincy of the a th normal Aode. For

abulk crystal, the specifio hvat bus the familiar Debye ~1. form. at

low temperatures. When surfaces are present, the normal mode fre-

quencies are modifiLed from those for a perfectly periodic crystal,

and the specific heat acquires a surf ace contribution whose fo~rm

we now investigate.

A. Continuum Theory.

Early t~reatnents ()f the surface specific heat are based on the

Dobye elastiJc continuum model of a crstal. The Debye theory util-

- izos a method of counting normal modes which, in its- original *for=a,

yields the correct result i~n the limit of an inafinite crystal, but

an 4neorraet reault for a finite crystal. Uiontroll( 96 improved

the Debye theory by correcting the counting procedure for the

normal m~des and found that the vibrational specific heat should

have an additional term proportional to the surface area. In the

low temperature limit, this correction term is proportional toT2

in contrast to the T3 depewdence of the bulk term.- JHoever, )(ontrall

used olapped bouudaries rather than free boundaries.

The modifications-of the normal modes by free surfacos bave

been taken into account in the isotropic elastic- corttiirnuu theory

by Bram~ and Saisu4Powitzk.,1ir by Stratton, and by .* -

'7

K3
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Dupuis, )tazo, and Onnager. 99 Wo shall utilize Stratton's

approach in the diseussilon. to follow.

In the continuum approximation the mean vibrational energy can

be expressed as an integral over the normal no'ae frequencies

(E) g(w) E()dw (93

vhere g~)dw is the number of normal mode frequencies in the range w

to w + dw, and Z(w) is the mean energy of a normal mode gi'ven by

e(w) -trwtn(w) + J3 9

* The spacific beat is then obtained from

C~ V4 (E)/BT

Our basic problem is to calculate the frequoncy distribution func- -

tion g(W).

T6e enumeration of the normal modes ks facilitated-.if ve con-

sider a club of material bounded by perallel. planos of.area 4L.L

* and separated by a distance `d.The normal modes for the isotropic

elastic slab were discussed by Lamb. (100 I They may be class~f led

as either symmetric or antisyr.mmtric with respotz to reflection in

the'mid-plana of the slab. A further classification can be achieved

in terms of the valuses of the decay coxustants q.,,q 2 of Sao. 2AMi.

For both real, we have R~ayleigh waves; for, l real and q2

imaginary, we hxve mixed waves; for q1,q2 both iz~aginary, we have

pure bulk waves with a longitudinitl com~ponent. In addition to

these three types of modes, that* are pure transverrm bulk waves.

. -J-

*p~~ *- -

- * -A
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The wave vector m~agnitude x, the attenuation const-azts lq

c4nd the froquency w -xe are related by the equations

-2 W ~ (q,2 _q2 2 ) (1+2K) / (l+) (100 )

where X ui/X and A4l are the Lam6 constants. Too wave vector com-

ponentdi q.W XtL and yj um are specified by periodic boundary condi-

tiong.

qx n.- (101b

The spec t~ication of the Rayleigh waves is complete-d by the boundary

conditioni

tA?~ x 1 L (1+2K1rU)

vhere a! q q/q, and the-exponents +1 ,-l refer to the syzmotric and
ant~lsymmetric modes, respectively. The nxumber of Rayleigh modes
with frequencies loss than or' equ~al. to w is given, to an adequate
appromiination, by

r-R(w) w~ 0
where V. Is the volumy-(+2X/12ls.~, and is0 h
solution of 'Eq. ( 102) for -'**

The mixed modes, have- one attaanuatlon constant i:eap1t~4 by a

pure -iaiay t-ttyq-. or lgrgo x(, tbo solutton at
-i~ g wu-y qu~ t y q

f 

.
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Eq.( 102) is

2 (nnz/2Lz) 6Y10

where 6- ta _.'iK~) n- 0,2,4,6,... for the symmetric mnodes

and ni.. 1,3,5,7... for the antisynmmtric modes. The number ,of mixed

modes G.M(w) is given by

W I+R Ift2 1+ 110

where n/

0

tan tp - tit- i&,,.and 6ý(tan q)) - a6/bf The integral X. cLn be

ovaluatod. by couatour integration yielding

The bulk miodes have -both attenuation constants replaced by

W igins~ry quantities, q! iq, and qj iq2  For large X, the solu-

tion o-f Eq. ( 102) can be written as

where) 63 (108)[g.

where- - a "*g()tan(xq' Lz)) arnd the n.are uon-aegaiive

integers. For tiao nuimbe~ of bulk modes OSW we have

2~w -le)/2(2~ Y}.
6C 1+2 1(lG )

- 4--
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67.

Finally, the values of qj for the pure transverse bulk waves

are specified by

q' - rnz/2L 1, n 0,1,2,3,4,5... ( 110 )

The number of transverse modes with frequencies less, than or equal

to w is
'32

G7 w) -w + r. ( 1 1)

- The total number of modes with frequencies less than of equal

to w is gIvnn by

S(w) -0 2 (w) + %m(W) + GB(w) t GT(W) . (112)

3
- - The part of G(w) involving w gives the bulk contribution to the

- specific heat, while the part involving 2 gives the surface con-

S ,tribution. Tlfe total number of modes is 3N whore N is the number

of atoms in the crystal. It w is the maximuma frequency of the

crystal, then

- -3H -(Wm) (113)

Utilizing the above expressions for the contributions to 0(w), ye

*, obtain from q. ( 113) an expression for w; in the form

WM Cnn + (OS114)

whore w, in the maximum frequency of the bulk crasta givern by

t ft - ..... c/¥ 1 2+EK/(l+2K)33/2 1/3 and AWm is tý* change in ,OM

"produced by the surface,

k+~~~~~+ TAI .n,..+ .V++• .- +* ";+++ -• •.4, -,-Y7 =S4 (

i?4

SW- S •+ ++++. ,,,, -.- = - "- -'= •/ /-. .,,---, <+•

r• ... . , 4,-+A.

- *+' + t 7+•++'t "-"



where A is the area ot tho crystal and n -NVf The differen~tial T:equeacy distribu~tion~ g(w) is related to 0(W)

Z~y V(W) - G(w)/dfj. 7he {autornal energy, negi-etiiig the zero-;ýoint

contribu1rtion, cani be wi4tten from~ Eq. ( -95 as

FM= Eq,( 94 the S V e- If -c )Le-Zt becolues

-2 2

Brain upe bothw andperGte limnto, thie irx* bulk and t sracD. p~s

can write th ufc ontýbt tor Yh Oasfchet'C ,i h

formla

-~ ~ - 01047 '~ ~z



k3  2c4 - 3c 2C +3ct3. 3~(3) k 2( I T 120)

where9 c is the speed of longitudinal bulk. waves specified by

et (~tg)p 0and C(3) is the~ Iievann zeta function of argutiont 3.

Equation ( 120 ) vas first obtzi-ed by Dupuais, }Mazo and Onsager

wb* used a contour integral representation forC.

'rho sur~ace specif~ 41heat is seen Wo be pmeportional to W'he

surface area and to the square of the absoluto tempera ture at low

temperatures. For fine powders at sufficiently lov temperatures,

the isurfa-ce specific beat may become comiparable to the bulk 7'9 Coa-

tribution.

~. iseetoLattice Theory.

ThrQ first lattice dynamical theory of the surface specific heat

was developed by Patterson C11$who utilized the Rosenstock-Newell"' 1 )

model involving nearest-neighbor central and non-central interactiona

in a simple c ibic lattice. At low tonperAturos his roz-1.t reduced

-to a quantity proportional to Al2 However, the lack of rotational

- - - invariance of the Rosonstock-Newell model makaes the result lack

quantitative significance.

A more recent lattiee-dynamlcul calculation is that of iMaradudin

and Ua11is(102o'who treatect the surfaco as a perturbation Ian4 employed

a-Green's funcation method. The pE~rturbation involvei settin~g to zoro

the :Cree constants coupling atoms on opposite sidea of the plane

- ''~- ~de-fining tho surfne. In principlo. it xight also involve chbn-caas

in. Soree cornsutau at or near the surface but not aro"Ing UOs do-

lining Plane. TUG l~twer changes Ar* apgloctad Im thetva wkma~nz to



ZEquation(94 for the spec if ic ho2.t may be re-axpressod az a

power saries in exp(-3hw 0)

(a a

The aum over the nornal modes ca bD replaced by &~contour InteiJ~d

so thatt

Tj " f3 -nphz 2CV A z F z )d74(122)
n-l .1

* where

~2 ~ 2 (123)
a

and the contour encloses the po5sitive real axis and th~is encloses

the poles at -IV of F(Z2 )

The frequencies w0 are those of the crystal with a pair of free

surfaces. W~e shall also need the frequencies wos of the perfect
* 2

perio4ic crystal and the function Y0(z ) obtained by rep'-acing w

by wos in Eq. (123). The surfatde epontk~ibutcion to' the specific heat

can then be expressed as
2

CS i n- 12 0-nh _2 F (z2 )3fz .124)

2 2By expandin~g in inverso powers of z, cue f inds thzat P(z )-F (z is

of order so that the contour cat be taken along the imaginary

=~is and closed by an infinite semicicrcle lying In the right-hand

side of tba complex plane. Since the contribution fron the semi-

circle vanishes, 'the surface spocifii :heat can be vr3itton As
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/TT)S 2 fiJ_.ni(nsh) (125)

n-1

where y -- z

i (n'P A) 3 asunplthylksy aY (126)

22and OW a) 70I(-Y2) - 'y) .. (12?7

In ýtcio low temaperature lizI~i we are interestod in the asYmptotic

beh-avlor of anO) as n~ '.o, it c be hV~.r txzt.ny

has as Its only singularity a losaritbxic depe-ndence *aon '

so thatý the ,4oninant tora in the asymptotic behavior of- S(n$h) as

nph is given b

-J(nph) 3r- 1 001/rgt~t os~ (129)

-The lov ter-perat-ure limit ofi the surface specitic heat then becomes

- - S3~ 'OC(3)ka~s/l 3

The problem. now is to calculate Q(y2) and this requires-con-

- - - - ~sidoration of the Ilattice dx~to

Let the force constrnt natrices for the perfect crystal and

for the crystal with the fre surfa&c* be 0And ±'rozpectiva1y.

The equations doetoriuinc the normal mxodes for the" -two cmses can

bo writtena as

V.._



L u 131

* and

vhore
2 b

L M- -

6LC 133b)

M is the (diagonal) mass matrix, and u is the complete displacement

vector of the atoms. 6L is the perturbation matrix associated with

the free surface.

We now introduce the Greanti; function zatricasi0 and U for the

perfect &nd perturbed crystAls, reipeattvely, by

and U ( L)13

one sees from 1Fqs. (134) and (135) that U is a iolution of

U + G 6L U

vh~ere the m.atrix T satisfies

T 6L +6L G T (

2It will turn ou~t that fl(y )c~aA be expressed in terms ol T and that

T can ba aulculated exactly for certt~in c-ses of intarest.

At this point, we find it convenient to express ?Jie elstants

of 11 in teras of the aigozvector componeats B, (4PicL) and eigenvalues
2V%
wof the dyni~ical natrix,

* U~(x';~')~ * ~ 138)
NS



Utilizing Eqs. (123) and (138), we see t.hat F(w 21 )an be wriltten as

F(W 21. My UaCL(4V4;W 2) .140)4 -'e

SA similar expression holds for Fo(W 2) in terms o! G - nameI¥,

* whore the nd (ndex) sasy the •tnd ormaiztion condiretiot nd

2 B(Lna)B"tna)8 2

Uht eiizving Es (2 and (138)cw cesthat' F(w) can be wtten as

(0) 1 ik 34K QaCKW)*( 1403

whor the modeindx T s nonventands fo • lthe wav vecto ok an obranch

sImir ex pr essinthols ofo ia n bewritter o as

2 21
fl y1e (MIXUaak k; K w ') - WS '(t' W) )

-- el TriOT 142)

-4--

The matrnxoTtos otheperfec crysal Cted cy ans e takenuin

the formtasomdfndb

whor th moe idexa no stndsforthewavevecor c ad banc



Substitution of Eq.(1 4 b) into Eq. (137) yields the Integral equatioz

satisfied by -ýW ;

Vj-k V~j~~; 21

+2 2 t k14~~j;

xhere

In teas oftj kj;w2)~ r 1~ fucto O(Kjk ) -~mbeexrs da

4 25
1~48)

ki ty + wkl

2
The key to *btainits MlY is the solution~ ý the iintegrall

equation (1466). In general, this is a difficult tas&., bait it cari

be acco-Ap3ished for special cases. we ao diacuss Oon Sue", case --

n~sly, a sizmpie cubic lattice with neavest arz4 next-nearlest neighbor

centrm1 foeces. 'The ptozntial sio~gy for this± wo1 tan. be writton

jj 11 111 111 11 1 ;1 &Qrp. !I: i 111111I-'."- &-11

Ow*,4
~-*, --
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q'~ ('~ r 4t)(ua (4,)-u (.&'))Cu U, -u (4')] 149)
a a

where the prima on the first sum meoans tne term for 4. j,' is

o -te and the coupling constants q r, a etkoI h

omitt(r (r

With centrAl forces Caiuchy'a relation C.l2 044 must be satisfiled by

the elastic constants. We also impose the isotropy condition

ol- e,2 2044 which leads to the restric tioa

41 i (a) CP AO(151)

where ain the lattice constant. In the long wavelenitb limit

(which is all we need for tbe low temperature specific heat), the

oignvlue z2 (j)are

W (kl) ~.(3c4 4/1) k2 ( 5a

(k2 (k -(444) . 2  
*(152b)

T'ho eigenivactor a(kl) is given by

The other two eigenvectors can always iza eliminated w~ith theo aid

of tbho closure relation
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For the model just discussed, we introduce a pair of (001),

free surfaces by setting to zero all-interactions coupling atoms

on opposite sides of the plane z - la0  A total of five "bonds"I

are thus cut which link a given atom in the plane Zz- 1 with atoms

in the Plans 4z 0. The pe~rturbation 6L is specified by

6L (us6- 6.LO(44')

The kdrnel V(kj ;k'j' ;w ) then becomes

VOC kj~ 2) . 6(k +k1)6(ky+k1) v-(kJWZ-(kjt) * 1Z8

where ;,-4

4'z, , ~ [_&)

3and the volum~e of the crystal Is (Lao) . It ~should be emphasized

that Z, takes on only tho five values corresponding to the bonds

broken in formipU the surface.

From Xq. (158) one sees that the kernel is separaible. Equat-1on

(146) can then be solved bv standard methods to yield the reisult

jM-,

-V~

_-ý
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, w1aero Iia tho 5 x 5 unit matrix and M(kk.;w2  is a 5 x 5 matrix

whose elements are

1I--, (k Xk ;W') 2 2(159)
"kj XY wt w (kj)

It is convenient to introduce a new 5 x 5 matrix m(kk ;W) by

M(kZky;W)2  E1 •(kxky)[I-m((k ky;w2 E(ktk) 160 )

where

Sk (iXY X Z X- -Y6 .

Using Eqs. (15). (158), and (160), one ubtains for n(y 2) the

expression

C)(y2 Q-(j wz-,U [-kky -12] 6

• " T,'hore'"

W-(k) k-( 2 "rE 163)

Tho singular bebLvwio- o! a0 y 2 ay arise& troam a diver-

gence in the sum over k in Eq. (162) associated wish epall k values.

"In fact, it Is tbO mutrix [ I -m(. k.:w w vhich is sing-ular as
-k 4 0. 'W can thorelore restrict our attention to snail k values,

replace the sum over k by un integral. The result for n(y 2 ) is

ly I-' A- 5' aOk a0d (2) xk:,,;-y2) x

- 10

(164
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wihore A its the area created by cutting the~ bonds,

2 i'2 Ef37dk L.ve\.j/(!-ok~j '3 :)k I

(kky -y ~ j P
[y+ a k

a 0(165)

andc c 2- 3ck 2 3c~ 2 3ý) (21 a )/a(p

The evalu~ation of the elements of m (1 and m()using Eq. (165) ".s

straightforward buat tedious and is given in detail in Ref. (102).

The result for the limit of fl(y 2) as y .0 is

n~ 2 Au (10/3) 4cnIyi+ o(tnjyj)

Using Eqs. (130) and (166) 'wo r.btain for the surface specific hoat

at low temperatures

CVS ,3,Y 'k;/!1 2 (3) (10/3c 2)AT 167)

whiichi corresponds to the results of Dupuis et al9) znd of StrattonCO

when ct - 3c2

At this point it m~ight be well to discuss exporidental attempts

to observe the surface specific heat. Lien and Phillips 0 3

measured the specific heat of !.g0 powder in the range 1.5 to 44KC and-

f'.jund a contribution of the form C -0. 163Tr
2 mjules/miole/dog.. The

discrepancy may be attr-ibuted to uncertainties In the surfa~ce a.Vea,

the Debyo tezpe~r..ure, and the true elastic constants of the strAll

particles. Mlorrison and PattersonC104) carried out measuremantns on

WACI powder in the range 1GPXi to roomn teinperatu~ra. The exc ess

specific hecat over tho W~ value betwean 10*1K and 20PX is about

- ~ -. , ý

Z'.



1.5 times the thooroticnl surface spocific heat of Dupuis at a(I.

Similar results have recently boon obtained by flarkman, Anderson,

and flrackett(106 for NaCI powder. However, the coefficient multi-

plying T2 in the surface specific heat was found to be about 40 par

cent less than the value of 11orrison and Patterson and is therefore

in bettor agreement with the theoretical result.

Do Sroan ihl(O measured the specific boat of larpblaclc,

* but thoe xcess specific hea*% over that of bulk graphite-seems to be

* duo more to changes in the elastic constants(17 than to sur~face
effec ts

The theoretical discussion so far presented has been restricted,

* to isotropic materials. Some recent work is applicable to non-iso-

tropic Mrstals. A computer calculation of the surface specific beat

for a (160) surface of u face-centered cubic lattice with Lennard-

Jones (6,12) interactions between all pairs of atoms has been carried

* out by Allen and Do Wette( 25) using Eq.( 9~4). The results are appli-

*cable to crystals of noble-gas atoms and were obtained over a broad

'range of temperature. At low temperatures, the expected T2 dependenoe

vas found; at higher temperatures, the surface specific beat was

found to pass througla an inflectioli point- Indeed, the surface specif~ic

beat must pass t1.rough a maximuz and approach zero As the temperature

incoreases since the high temperature specific heat has the valuekB

per norzal maode, independent of the~ presence of z surface.

*This behavior has been found by Allen and Do Wot(10 who

extended the calculationis just discussed to the (110) and (111)

surfaces of noble gat crystals In addition to-sha (100) surlace.

"TMi `-
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The surface specific heat was found to iOeak in the ViciPitY Of.

10*X for Ne and at slightly higher temporaturas for Ar, YKro and

Xe. Allen and Do Wetto also calcu~lated the surface free energy

which varies linearly with teinpersatuxia at high T and approaches

the zoro-point 'ealue as T 0.'0

Similar behavior-.has boon found recently by Chen, Alldrodge,

Do Wette, and Allen (0)who have calc~ulated surface thermodynamio

functions for NaC1 slabs using tha rigid ion moddl involving

Coulomb interactionu aid nocareat-neighbOr Born-Mayor interactions.

The results for the surface specific beat are iny quite good ogree-

mont with experiment. (0)The calculated surface specific heat

exhibits a maximum at 450K which is close to the experimentrl

yalue of 40 0 K. *4

The P~osenstock-rowell model(41 ) has been employed by Dobrzynski

and Leman (110) to aoutethe surface specific heat by means of a

phase shift method, The resuilt ia the low temperature limit hc3

the form

C,8"(3/4nc-*)El + 2(c 4 4 /c1 1 )iC3 A2)T (168

which is qualil-itively similar to the result of flepuis a, al.

Cunningham"" 1) has calculated the specific beat for an

anigotroPic (110) surface of a simple cubic lattice using tvio

different nearest-neighbor force, constant models. 'One model

assuaaq a decoupling of the motions parallel and perpendicular to

the Rurftc'e; the other is the Rosenstock-'Rewoll model.. The GreeyiiaX

function zaettio (102 mns ud to calculate the surfai;g specific

,~N,

'%V

~ .,,,,



hegt whicth wzs found to be about 10 percent lower in the isotropic

limit than the correct value. This discrepancy may be duo to the

lack .of rotptionaX invariance of the models.

The surface entropy AS of fage-centored, body-centered and

* diamond-type cubic crystals has been investigated by Dobrzynski and

yriedel (3""- utilizing a nearost.-tioighbor contral-forco model. The

(100), (110), and (11l) surfaces were studied, and for each lattice

it was f ound thal

ASCIOG)> AS(1l0)> AS(l1l) -

C. Adsorbed Surface L~ayers.

Some investigations have recetitly been reported concerjiing the

surface specific heat of crystals having adsorbed atoms on the sur-

face. Dobr--ynski and Mtills~ 6 have used a Green's function method

similar to that described above to study the Rosenstock-Newell model

of a simple cubic lattice with a layer of adsorbed atoms oai a (100)

surface. The central and non-cer.tral force constants were aps*=ed

to be eqiaal,-and the same value of this constant was used in the

bulk and at the surface.

Taking the masses of the surface and bulk atoms to be 9 and M,

r~espectively, Dobrzynski and Hills f tteme eito

i~t the surfAce gave a contribution tpecific heat at-low

Temperatures of the form

- ~ C~8 - N, (144 rJ/5 )ffa k~(/~ 6

16

,LW. 
i
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whore Nis the number of surface atoms (mass M a- 0 CM5-)/M.

and 0Dis the bulk Debye temperature. Since this cantrkbutioL is

smaller on the order of T/O D than the ordinary surface specific

heat) it will be very hard to observe experimentally.

Additional calculations of surface thermodynamic functions for

adsorbod pnrticles huve been made by Allen, Alldredge, and De ot 13

for the (100), (110) , and (l111) surfaces of a f ace-centered cubic

lattice -with Lonnard-Jones interactions. The changes in the thermo-

dynamic *functions due to the change in mass of the adsorbed particles

were calculated numerically as functions of temperature.

The effect of u step on the surface specific heat, enteopy,

and tree onergyv haa bean W'oirid out by Masri, Allen; ana Vobr~yanski

for *.[100] stop on a (001) surface of a uimple cubic crystal using

the Rosenstock-N~ewel Moedl.. The step is found to incxea-se the

acm ace aponific heat and entropy, but decreaso the fies energy,



4. AT;hNUATION ANDf AXPLIFICATION OF SU1FACS WA VE 8

Only recently have either the experimental or theoraticol

aspects of the attenuation of surfance waves received detalled

attention. We first survey the theooretical sltuatioD azd thea

briefly disuuss the available experimental results,IA. Theoretical Aspects of Surface Wave Attenuation
Various mechanisms can contribute to the damping of surfacet waves. These incjude the anharz~or*c interaction between phonons,

tho intekaction, of the surf ace phonon with impurities and im er-

fections ina the crystal, and the interaction of surfoce phonons

with conduction electrons in metals or semiconductors.

Since long wavelength surface waves penetrate deeply into

the zaterial, it may be expected that the-damping constant for

such surface waves can be related to the damping constantb for

bulk waves. Press and Hioaiy(15 have considered the laotropic

case where the Rayleigh wave velocity R -IS specifled Iby

t .2

2where c~ and c 't are the velocities of compressional and shear

bulk waves, respectively. Dissipation can be Incorporatad Iry

lotting each velocity bocome complox:

0~ 4,y G.c( + ja)i

Ct t t ~l+ 1l

*1 R VR OR C(+i6R)

INA :A i :;0115 ( ý

J, .1



If onie takes the total di frezti'all o!. Rq ave nd solvess ter

the in~crement 6in~ terms of 6 ad 0 r. 9 fi a

4 2 2

c ~ ~ 2 / C2

a~4usngEq.17 ), 2 'eotanfo

The damping constrinIA for the Rayleigh wovs c~n n~~w be -gritten

in torms of the deamping conistants 2n eft or eo~pressional

and sbear waves, respectively, aa

t
CIA - -. .. 3 1,1 P

2 2 2

The theoretical p:!Idictiou conarlined in Eq. Cl1'P) Wre found¶ by

Pr;eks5 and Healy to ba In -good S9TOC=Gnt with~ experizantal d~atai

for plaziglass anets..
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,The procedure of aadupting the theory for bulk wavo attenua-

tion to surface wave-s has been pushed further by Mc Bride( 116 who

applied the results of HAaris for bulk wave attenuation by cubic

anharrnonicity to the surface wave Problem. Even at liquid helium

temperatures, the waveleng~th of typical thermal phonot, is much

less than the wavelangth of the ultrasonic surfar-e phonon, so the

princi~pa' scattering of tuo ultrasonic surface phonon io by bulk~

phonons and not bf therma) zurface phoaons. In particular, the

dominant process in

~+t. T o

vhere lE stands for the ultrasonic surface phonon and T stands for

a thermal transverse bulk phonon, At low temperatures where

w' >> I (T is the lifetime of the T phonome), Me Bri.de finds

where T is the absolute tempera ture. This result is pt varianlce

with~ results of other workera to be discussed latger.

I A somewhat different macroscopic approach has been follow:;d

by Maria~l8 who related the attenuation of ultrasonic surface

waves to the bulk via-cosity, heat conduction, and thermal expansion

I of the crystal in the limit that thn mean iree path of the ther'.aal Z

- phonons is .uuch less than the wave length of the surface wave, The V

I ~procedure ghould therefore be applicable at high tempera tureb. A

similar treat-mont has been reported by KiCng and Sheard~l9g)

who 9ive a specific exprension for the surface wave damping constant, 2

I ~The displaceaeat vector u which satisfies the free surface boundAry-
ootiditions can we ittan In the fr o.£.()

00 -or (c..()

40
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U Z X expfi(h3'r ~tj(177

where B3 and k have Cartesian components whose analogues in

Eq. (8) are ti , ~, -ikj and x:,, xm, %~ respectively. The

viscosity tonsor components 'nj4entor the Rayleigh dissiypatioz

functiori

(178)

where e;L is an element of the strain tensor

For a general elastic medium, the damping constant eu takes the

form

a-8.7 w~.~/2ao dB/cm IS

vhero

D ijtJJ-%k-C-JBiJ~axi Ykat/Q3 q;,*q

k k r X( X x: !4 tx 2 + ar3x )z X 2 nd i i For an isotropic

medium, there are only two independent, noc-zero eloments of the

V viscosity tensor tnd the expression for the damping constant

r reducos to a tor= eduivalent to that cf Press and JNouly.

A c~inzinuum treatizent applicuble to anisotropic cryst!5ls St

low temperatures (w-r »> 1) has boon preaented -recently by King and

Sheord.(120 ProPdr sccoUat is taker ol the tree zarfacc. boutd~ary



NF cornditiors. The displacoment vector u! which satisfies these

E2EdrycodtE iona e;E rittis in the torgie by :q. (177)

Sicwhee dampng constheantnisclclateo ad queantum moperatorfor

using pSerturb eglect theorfect iconvnin toe quraceioe the bukndes-

Thecorespo ndn qu+ r teannih~lation aond ceaion foreratorods of or

areatr, and p s ormarizationp contn t thehcn be carctlaee aso

thekinti. eery (al th ttalenrgyn +isienb

Iif B *B e1 * ( 8

-
2PVtvkP Ip

where e i the polarization vector and w +aetenu.U4

I tion, and creation operators.

2 XM



The cubic an~harmonic interaction in the contin~uum approximation

hau the form

'(1/3n * C ijktran ax., Bx rX

whore the coefficionts A ijjmn- are reluzed to the second a nd tbird

order elastic constant:.. Considering- only interactionsc between a

surlace phonon and a bulk phono4 to produce another bulk phozaon,

k+ (k VP 1)•;ý (k-2 2 p2  I

King and Shcard obtain tor the matrix clernont of H1 for this proc±oss

(.h)'h ) h/k Ik 2~IPIs( 2O - g (28C

1 2

where Ceare the bulk mode velocities, Unr,,l and n.. are'the

mode occupation nunbers, and

'ik~,#n iQJ j Olkklte2 mý2 nl (s

where P denotes the six parmutzt.Uon4 ot t3he pairs ýij), (kj,),i (van).

Vaiz4 per-turbation. theory, the transition rato and thence the

relaaipn tI%* T fo- surfAce phoimns cakn be calculpted. Tho

111 1 11 ;111 o a

z7 '2

-r .- mama



result is

%7 It 2 kik F l 2

X I(SW-2)%; k2 8

where 91and R. are the mean occupation numbers of the bulk phonons,

and WS w' w a Ire the frequencies of- surface And bulk phonons,

rospectively. It should be noted that the dominant procabsba atten-

uating sirface waves are energy conser~ing (cf. Mec BrIde~1 6 ) UO

nzo relaxation time for the thermal bulk phonions appezar in Eq.(188).

The integrals its Eq. C188) may be simplif led if onc introduces

the ne~r variable K k k-k und uses polar coordinates k 0, (p forR

I with X as axis. Only small K are important, so both bulk phon~ons

can be Taken in the same branch, k k2 sý k I Y2  
4v .fautn

the integral over k, in Eq. (188), onj; gets ~Y ~ *~autn

h W h1' %4 1

where

c1JC K
A'l~--cosO+-sine -, 1

D4 -I

x~a pr1kj/k , and X Yx/ inb the low t~ameratizro iai

4
D~4 aI.1, Go Ono bar

AkA
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The evaluation of the renaming integrals in Eq. 0.89) is difficult
I

and has been carricd out in approximate fashion by King and Shoard

I r s�Xace �avoa propagating in the X direction on tho Y and Z

surfaces of quartz. The results for the Y surface differ by less

than a fa�tor of two from the experimental data of Salzmann et ai5121)

A lattice dynamical calculation of surface wave damp�.ng for

an isotropic cu'ic crystai has oeen carried cut by Maradudin and

(122) using a Greens function method. A nodal with nearest

and next-nea�'est neighbor eentral harmonic interactions and nearest

neighbor cubic anharmonic interactions was employed. Using standard

techniques of many-body theory, Maradudin and �lls relate the

damping constant r6 (u) (proportional to the reciprocal of the lifetime)

for the s-th normal node to the proper self energy i� (�) through.5

the equation

kT (l9�)
Lim P(w�4E)

8 s E-.O

V
whore � (�) is the frequency shift due to the anharmonicit� and

� is to bo caken equal to the normal mode fr�quancy u�*
Zn terms of the �r n's funct±on u 2

(�,,(,�'iO'; ) introduced

in our discussion �f surface specific heat; P� (w) can be expressed

4�.n lowest order �f perturbatiox� the-ory as

� � B8 � B� � x

- C-.

ti � 7 f�t�%� !SOA ) - -

X �j U �Z�2�'n' �X�-�'a''�� �2�2

-, -. - - - -� - .4..' . sC. - ..-. ,-- ..cc,.i

- '. --

-V.,--- - - � �s----'.. C



wheto the indices n~x have been dropped, M. is the mass of an atom,
f (TY1 3 ) is the cubic anhar-monic coefficient appearinS in

* the cuAdc anharmonic Hamiltonian

%- 1 -(1/6) E f u(' ' Q)

and w- 2ITj.ke/h 'with t an integer. At this point Maradudin andjMill. expand in "aerms of the eiganfrequencies w(kj) and eigenvectors

Ii0 B 'C for thin perfect periodic crystal

IIIýh~

-j) 196b)

viheri. j (-U) iU given by Eq.(143). The proper sionrynow

bocornes

72
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W(klh1,'j2 3VW 3) Ctm(kljj)w(k 2j2)W(IC~j3)3i x

x C ioe Iý3hand
V(k1J1~~ 3  3/2-~

Cwkjx ~

l~~l-k2J2'W 3)(19 )I_)-J)wtJ)

The sum over n inj E~q. (198) can bo evaluated if use is wade of the

spectral representation for kjk ,,2)

u~k~kj'w)-jdv .('200

Using the theory of contour integration, one finds

where O(v) Y Coth(nV/2kj~). The damping constant r,(w) now

follows from Eis. (193) (k~98) and (202) and can be written as

W(k1j 1,1k2 J2 ,k3J3) 1(_KiJi'iJ"k34iJi) x 202)

-. -e
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Turning now tr the case where the mode s is the Rayleigh

surface mode, we consider the quantity 2i(kj,k'j';v) in the presence

* of a surface. Since the wavelength of ultrasonic surface phonons

is long compared to the wavelengih of thermal surface phonons and

the penetration distance is proportional to the wavelength, the

interaction of the ultrasonic surfece phonon wlih theraml bulk

phonons is the main mechanism foi- damping. If the effect of the

surface on the ihermal bulk ph6nons is neglected, Naradudin, and

Mitlls s'how that the spectral density u(ki,k'j' 1•) is well approximated

jby that for the perfect er;stal without the surface, io(kJlk'j',v),

givun by

•o~ j~k ,l,;=) •(I+k ,)6jj ,([w=+w(kj)]-6[w-w(kJ)]1/2w(ki). (203)

The next ingredient required is Cr(RJ)Cs(XIJ') for the Rayleigh

, - 2ý (24

wave. Now from the definition of the Green's function U B(t' ;W2)

w'e see that

. s - -M Res (V ,44' ;W 2 (204

where lRes f[U .2 stands for the.residue of U ;33,) at

-• Ithe simple pole WW5s From Eqs. (138) and (196) we see that

C(kj)CS(k'it) 2 25teseta esiyu1~''w

- I Res • kjktj?;W ('

The double Fourier-transformed. Green's function u(tjk~j )can

AI be written as

At2.

1*r



uGkj,k'j';W 2) - u(kj;k'j'; ; 2) + tAu(kj;k'j';w 2) 0

where uo (kj h'' J;W2) refers to the perfect crystal ard is giver. by

u 0(kj,k'J';W 2 A - k ) ( 207)

while 6(kjW";w2  is the incremenL ia u - ;2, productid by-

the surface and is given by

&'u (kJ,k 'j I; 2 t(kj I'0j, ;W 2

2
with t(kj,k'j';w )specified by Eq.C158). Since uo has no pole at

the Rayleigh wave frequency, only Au contributes to the residue in

* Eq.(205). Maradudin and Mills evaluated Au for the nearest and

next-'nearest neighbor central force model of-a simple rzubicr lattice

employed in the surface specific heat calculation. 02

The final ingredient required by Eq. (208) is the anharmonie

coefficient V(kj,kj 1 kj) Maradudin and Mills argue that the

nearest-neighbor interactions are dominant in the anharmonic lor~ms

if the interaction potential p(r) drops of f rapidly with increasing

r. The cubic anharmonic coefficient in goneral involves p' '' r),

p(rand (P 4(r). The third derivative ''(r) generally is the

nost important, and only this contribution is retained by

M1aradudin and M4ills. Furthermore, for deeply penetrating Rayleigh

wavac, the effect of the surface on the arnharmonic coefficients

gives a negligible contribution to the damping constant.

The RayloigW wave damping consitant can now be evaluated for

the' nearest and next-nearest neighbor central torco model vith -

i":II
_77



isotropy in the long wavelength 1Irmit., The details are cumbersome

-and can be found in Ref. (22). T." result In the low temperature

limit is

0.9 r() - C(4) (0.0521 + 0.337 ct

RB (209)

where re is the nearest neighbor distance and the RAyleigh waveI

speed i.s given by c R 0. 919 Ct The result contained In Eq. (209)

has the same T4dependence found by Landau and Rumiirý123) for the

damping of bulk waves. Maradudin and itil'.s have used their model

to calculate the ratio of the dam'ping cc~atants for xayleigh waves

and tranaverse'bulk waves an~d find that the Rayleigh wave dlamping

is much larger than the bulk save damping. This result is at least'

in Apart, bowover, A consequence ,if tho approximation~s mada in. th4irI ~ ~treatment. Ryeg

Besides anharronicity, Ralihwavom cani be damped through

their interaction with impuritie~s or other Imperfections. Steg

and Xlenens (124) have calculated the Rayleigh u*-,va drzmping constant

for impurity scattering using the isotropic cont~knuum Model. Ilief surface w; :.e displacements were taketA to have the usual form given

by Eqs. (~IA ), (15 ), and (16 ), but the bulk wave displacement$

were not chosen so as to Su1.~y satisfy tho free boundary conditions.

7be .result for the invorso sc~ttoring time when -the impurity IsE a

miass defect-at & distance z fromn the surface can be vzitten an

I.. M.
io



2(A2n4 W5 (A1 (4z)+ A2(XZ)+ A 3 (,Ka)) 210)
R~ SP,2B c~

where ni s the concentration of defects per unit surface area,

am is the additional mass of the defect, and A19A2, A 3  and B are

dimensionless parameters. The terms A3,.A., and A 3 describe the

scattering- of the Rayleigh wal.e ivto other Rayleigh waves, into

longitudinal bulk waves, and into tr-ansverse bulk waves, respectively,

while B is a slowly varying function it Poisson's ratio.

Steg and Klomens.investigat- ..' e rctio 01 scattering into othe~r

Rayleigh waves to the scattering into bulk waves. They found that

this ratio is significbntly greater than unity for wavelengths

greater than the distance z of thz impurity from the surface, but

bcesvery small when 'he wavelength is muth les 'than z. Equa-

5t io~n ( 210 predicts a ver'y strong .W. *dependence on frequency for

z-0 (defect on the surface). Thib suggests that the successful

propagation. of very high frequency suarfareo waves (w > 100Hz) may

require very smooth surfaces.

B. txperimental Aspects of Surf ac3 Wave Attertua~tion

An excellent review of experimental techniques usod in the

study of surfe-:e elastic waves has recently been published by

Dransfeld and Slmn.(125) A somewhat older survey is contained

in Viktorov's book. (126) We shall give only a brief discussion.

A number of methods have beea employed for the generation of

Rayleigh waves. A mechanical we'tbod utilizes a wedge or prism placed

on the Ourface t~o be studied. A transducor placed on an oblique

surface of ta-r wedga launceos longitudinal elastic waves of speed

4" 4
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C into the wedg. A.t the interface between the wedge and the

solid of interest, the longitudinal waves are partially converted

into surface uaves of speed C which then propagate along the surface

of the solid. If 9 is the angle between the oblique surface of the

wedge and the surface of the solid, then sinO - C 1C. The prism

must therefore be made of a material with a small longitudinal wave

speed, CW < C, such as a plastic.

Another procedure applicable to piezoelectric materials involves

a series of linear electrodes deposited with a spacing d on the
(127 j

surfacu. f the electrodes are all connected together, one has a

single-phase array; if alternate electrodes are connected together,

* one has an alternate-phase array. Appliqation of a rf electric

field to the electrodes generates purface %aves through the electro-

mechanical couiling of the piezoelectric. -The wavelength of the

Rayleigh waves generated is equal to the electrode spacing d. Fon-

piezoelectric materials can be handled by depositing.a layer of

piezoelectric material on part of the surface to be studied and

then depositing the electrodes on the pic?.electric layer.

The single-phase or alternate-phase electrode schemes can also

be employed to detect surface . Recently, optical techniques

using lasers have been devol•, ,,i'.28) for detecting. surface waves.

Relatively few experimental results are available on the d1amp-

ing of surface waves. Salznann, Plieninger, and Dransfeld•1 2 1 •

have studied Rayleigh wave damping as a fuuction of frequency and

temperature for several surfaces of quartz. At low temperatures

-, i (below 40OX), the danping was found to axhibit the •T4 dependente
calculated by naradudin Mills. At high (e)peratures

(above 6009) where wi' << 1, the dazping in independent of T and

It
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varies as w The w2 dcspendenco can be unders tood in terms of the

viscosity coefficient theory of Maris(118 ) and of Kin and Sheard! 1

The actual experimenLtal data lie somewhat Above the values predicted

by those theories, but improved experiments by 1Bidreau and Carr~ 2

have removed this discrepancy as well as the discrepancy with the

fx'oquoncy-independont results of Daniel and Da Kierk. (130)

C. Amplification of Surface Waves

Recent interest in surface wave devicee has focused attenltionl

orn the amplification of surface waves, part~icularly in piezoelectric

materials; For such materials it is possible to couple drifting

current carriers to the surface wave and thus transfer energy from

the carriers to the surface wave.

In practice, one can avctd screening effects in the piezo-

electric by having the carriers in a thin vla of. semiconductor,

piaced adjacent to tho piezoelectric. This case has been discusboed

-theoretically by Gulyaev and Piistovoit. 3 The attenuation or

amplification of the surface wave is determined by the imaginary

part of the wave vector kc,

Jmk _ 2 E1 E2 Jm* F(W'k)
Ic - IE+~)i- 12 kch (211a)

where

I A(A + k)r6 21 ( lb)
l~2r,2  _

+ (TM)211c)

r CS

DI

.-L
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h is the thickness of the qlab, is the coupling constnnt,

rD is the Debye radius, v is the carrier collision frequency, w

is the frequency, E1 and E2 are the dielectric constants of semi-

conductor and piezoelectric, vT and vd are the thermal and drift

volocitios of the carriers (assurod non-dogonorato; if degenerate,

vT-vFff" whore vF is the Fermi velocity), and cS is the velocity

Df the surface wOvo. From Eqs."( 211 ), we see that amplification

occurs i'f vd > cS.

A theoretical discussion of amplification of Rayleigh waves by

an electron beam passing near the surface has been given by Gulyaev

and Zi'berman. Viktorov 1 and Kaliski( 134 ) have

discussed the particular case of CdS. The effect of a magnetic

field has beon treated by Bers and Burke. 135 )

The experimental observation of surface wave amplification

was first reported by White and Voltmer( 136 ) and by Vas'kova and

Viktorov( 137 ) for CdS. The procedure' luvolving a semiconductor

slab adjacent to the piezoelectric has been utilized recently by

Collins, Lakin, Quate, and Shaw( 138 ) lo study amplification of

surface waves on Li?'bO3 . The amplification of Bloustein-Gulyadv

waves propagating in the [110) direction on the (110) surface and of

Rayleigh waves propagating in the [110) direction on the (001)

"surface has just been reported by Ludvik and Quato. 139)

- I.
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5. 171AN SQUAFE DISPLACEM1ENTS AN~D VFLOCITIES OF S'URYACE ATOUXS

A. Introduction

The moAn square displacements of surface atoms can bct stuzdied

exporimortall.e using low-onorgy oloctron diffraction (LEED) or tho

113sabauar effect. Since only a fewr radioactive nuclei such as

57Fn and 19Sn aro suitable for MAUssbauer investigations, vo shall

devote our primary attention to LZED.

Lot us consider the. diffraction of low-energy electrons from a

crystal. As che temperature ot the crystal increasei, the increas-

ing vibrational amplitudes of the atoms cause the diffraction spots

to broaden in width and decrease in peak intensity. The decrease In

intensity of a Bragg peak is described by the Dobye-Wallor factor,

exp (.-.2M(4~x)J, where

- u(Z.)j 2 , (212)

u(,Lx) is the displacement of atom 4.x, and R s a wave vector to be

specified. In the kinematic or single scattering approximation

the intensity of scattered electrons from a crystal with one atom

per unit cell can be expressed as(140)

-X ~ ~ )2 (21.3)

X--I.
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1oo

whore I 's the incident intensity, 4° is the Thomson factor, £r is
0

the atomic scattering factor, aft) is a transmission fmctor, and

SQ -' - K with K and K' the wave vectors of the incident and scat-

tured electron. The angular brackets in Eqs. ( 212 ) and ( 213 )

denote a therval average. The factor involving the thermal average

in Eq. ( 213 ) can be rewritten as

0 M

-MCC) -M(L)"0 e ~[1 + (C'•(9][C9'•(•')]) + .. )(214)

so that

S11+ •+...215

whore

2F

1 00 
.

x a [u~) Eut) (217)

The quantity I Is the Lauo Scattoring and 12 is the first-ordor

thberna diffuse scattering.

S . -

-ý 
, k '- _ - 'A i



102.

From Eq. ( 216 ) we see that t'o moan square displacement of

un atom in the crystal can be extracted from the logarithm of the

peak intensity of a Laue scattoring spot. If very low energy electrons

(typically less than 50 volts) are used, the scattering is mainly from

the surface layer, and the mean square displacement then refers to

a surface atom. It is convenient to discuss the mean square dis-

placement in terms of an effective Debye temperature G which is

dofinod by the relation

(U2 (3h 2T/mkoe 2) (e/T)

where

(x) D x) + ix 219)

4'

and D (x) is the Debye function,

1 X t dt

At high temperatures, k(G/T) - 1, and (u 2 ) is proportional to the

temperature T.

The discussion just gLven has been based on the kinematic or

single scattering approximation. Since very low energy electrons

are strongly scattered by the crystal, one must consider the effects

of multiple scattering. This has boon done by Duke and Laramore(! )
who show that the lattice vibrations ontor the thoor', in the form

of a Debye-.allor type factor multiplving the electron-ion core

scattering anplitude. The maltiple scattering leads to products of

• °o..
~%
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Dobye-Waller type factors, so the peak intensity may decay more

rapidly with incroasing temperature than would occur for single

scattering. The extraction of the mean square displacements of

surface atoms fZpm LE•D data is a complicated problem when multiple

i scattering is significant.

An attoept to assess the importance of wultiple scattering

effects on the extraction of surXý.ce Debye temperatures from LEED

data has very recently been initiated by Jepsen, Marcus, and

(142)jonm. They cosisidor the (.11) surface of silver and.calcu-

late the LEED spectra for a given value of 8 from dynamical theory

and then evaluate the results using kinematic theory to re-extract

the value of 9. The procedure yields values close to the surface

Debye temporatur6 for electron energies around 40 - 50 eV and

values close to the bulk Debye temperature for energies above

140 eV. Below 40 eV, the values of 8. turn upward and become

larger than the surface Debye temperature by 10 to 15 percent.

We now discuss a number of exporimeptal results which have boon

analyzed using kinematic theory. The surface Debye temperatures so

obtained must be treated with some reservation until the role of

multiple scattering effects Is fully clarified.

- - _
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B. Experimental Results

Exnerimental observations of surface atom mean square dis-

placement's woro first made by Zarisha and Kalasiinlikov (143 ) on

silver. Subsequent work was carried out by IMenzel-Kopp and Menzel~

on copper surlacos and by MacRae and Germer (15)on nickel surfaces.

These early investigations demonstrated that surface atoms typically

have larger mean square displacements than bulk atoms. The effective

Debye temperature for surface atoms is therefore smaller than that

for bulk atoms.I
The availability of commercial LEED apparatus during .the last,

decade has stimulated censidorable work or, surface Debyo-U'aller.

factors. Of particular interest is the investigation of various

surfaces of nickel by MJacRae (146 ) which revealed that the moan

square displacement of a surface atom in a cubic crystal is anise- I
tropic even though symmetry requires that tho bulk atom' mean square

displacement be isotropic. MacRae's data a-P shown in Fig. 12

for the (110) surface, The effective Debyc temperatures were found I
to be 2i00K for the (110) direction (perpendicular to the surface)

and 330 0 and 220 0K In the [110) and (ool) directions, respectively

(both parallel to the surface). All three surface Debyc temper-

atures are less than the bulk value of 3900K.

Additional experimental results are available for other f.e.c.

metals at room temperature an%2 above. Joneq, McKinney, and Wecbb (147 )

studied the (111) surface of silver and found approximate isotropy

of the surface mean square displacements. This may be compzred

with tho early results ot Zamsiaa and Kalashnikov (143;) for the (001)

surface who fou~nd a strong anisotr6py with the tangent!Al mean



squire displacement larger than'the normal component. Additional

investigations (4)of silver have been reported by Corotte,

Ducros, and Macall for the (111) surface and by Rovida, rorrini,

and Zanazzi for the (001) and (111) surfaces. Tho latter workers

found a parallel m-~an square displacement at the (111) surface

which Is nearly equal to the perpendicular mean square displace-

ment. Normal components of surface mean square displacements

have been measured for various surfaces of platinum by Lyon And

Sorzorjai(1 and for palladium and lead by Goodman, Farrell and

Sozorjai. Some additional work on nickel has been reported

by Anderason and Kasemo.~1 1  Copper has boon investigated by

Woodruff and Seah (152) and by Reid (153) and iridium by Goodman.(54

Both Woodruff and Seah and Reid discuss difficulties in obtaining

surface maean squs~re displacements frome LEED data. A summary of

surface Dobyo, temperatures for fce metals is given in Table 1.
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Table 1. Surface Debyo temperatures (rsorlal component

of displacement) for fcc metals.

Motal Sufc S(OK) eY(K) Ref oranco -

Ni. (110) 220 390 146

Ni (001) 280 415 L51.

Ag (111) 155 225 147.

Ag (111) 145 225 148

Cu -(111) 244 334 152

CU(0061) 230 334 153

Pb (111) 44 90 150

*Pb (110) 25 go 154

Pt (001) 118 234 .149

Pt (110) 107 234 149

Pt (Gil) ill 234 149

Pd' (001) 161 274 J150

Pd (111) 145 274 150

Ir (001) 216 285 154'

IvI



Somewhat less exoerimental-data is available on bcc metuls
(155) (156S) 10 c

Aldag and Stern anrd !3audoing have studied the (1)s c

of tungstoi, whIle Estrup 5 7 ha studied the (001) surface. The

(001) surface has been investigated for niobium by Tiabor and

±ilson(158 )and for chromiaim and molybdenum by Tabor, Wilson, and

Bastow.(159 )The foregoing work is restricted to room temperature

and above. Kaplan and Somorjai (160 ) have made the first invostiga-

tion nf surface Debye-Waller factors at lorw temperatures. T)Ie case

considered was the (110) surface of chromium at temperatures down

to 100'K. More detailed discussion of this worx vil1 be givt~n later.

A siqnmary of surface Debye temperatures for bcc metals is given in

Table 2.

T~ible 2. Sur~face Do)lsye temperatures (normal component

0ea~ of Cisplicement) foir bcc metals. Rfeee

W (110) 200 280 155,156

V (001) 183 280 157

Lo, (001) 239 380* 159

Relatively little experimental work on surf~ce Dobye-Wallor

factors has been curried out for insulating crystals. H~owever, an

interestiLng Investi~ation has recently boon reportedi on solid xenon-I ' by Ignatjevs at al.~1 1  who found that tho low energy electron
scattering frod this ma~terial is essentially kinematic. The experi-I . mcoital valued of the surface Dobye-Vafler lactor agree quito well



withi theorotic~l values 1calu1lited for fte crystnls by Wall-i.s

ot al.- 6 -ard by-Allen anl L ebtte~ K amicorductors have

libe n vestigated by Xsterzv.ko, Sorod1kin, and SnitkC- 6

who tound aurfac to116-bri1x rean square disnlacemený ratios (t-irmal

conponents) %;f 1.5 for Ga.4s (110) and 21.2 for silicon (111)-7.

The semiretal graphite ~tas been investigated by Albinet,

Biberion, en~d Bien-lait k4~ho obtwifed a sur~co Dob~ye temperature

Of 690 a - for the -(O0.1) surface.. -Tnt 1-e to bo compored with tho

bulk value of o 800K. ;-nodel ealculatti: gzve a value for 8Sd

720-30?3 K.
An alrernative way of eot-tininq information about the mean

Square -;U~plzceemita of surf~ce a. oms is throu.-h measurements of

the rcoilless graction in theý MIssbauer ef fcca. The recoilless

Z raction Is -prportional. t-6 the Di~byg-Wfil1r -factor ;.nd is -conso-

quently tem'perature dependent, Oirdinarily, the radioactivo Atj~claus

iz an ýýp~izkty, Wit for a fe*ý m.toaials such us Iroz and~ U.n, on5x

_v -get informa~ion a~out tho host crystal at~oms. ~~bi've
h-oen reported tor Feon various surfaizs. 1,1c Run.l P

larger imeaa squa~re displacoment for '5P at 1010 OQ0) Und (111)

aurfaces 4,f silieva than in the bulk. Qualitatively simiktr r~o-

-sults wer-e obtained by Surtc4a and Godwi~n. 1  for Teo of

crystalliine tang-sten. The latter workers, however, found the

O-posite effect I&Ox Fe on the (100) surface o~sle.Thia~ro-

Suit is in interesting -coatrast to the LtED results OS Uamsha and

Kfilashnikov~ 4  An* ,,Ones et al.( 147  for p~We silvL-r surfaces.-

Anisot~ropy In thie mgau squaire disp)lacezents has -Neen observed

by Flirsa, Ruby, 2nd Kohli(167) iho found thet riorzal ccponerAt to

be iarger ý.aan tbe pavallial component for -Fe *n *!=I~na. Dxw:on

An Godviwi, *a6-tbo to thbir bano, found tepzAraliei COMP~nOux-- ~ -t-

to be lara'ar that-N Vae rnoval tozqnent f~r IN oz W1yarry~talinci
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tungt~toll. A possible explanationt is that the 57 Fo atoms lie above

tho adrfaca layer rather thnn in it, but further experimental and

*theoretical work is required to clarity this situation. It is clear

that a major problem in using theý J~ssbauer effect to study surfaces

is the lack of precise information as to the location oir the radio-

2ctlvo nucleus relative to the surface layer.

C. Theoretical Rlesults

Qualita~tively, one can visualize several effects arising from

a free surface. The mean sq/aare displacement of an atom Is ¶ieter-

mined by tte interatomic forces acting upon It. A surface atom

is acted upon by fewer neighbors than an interior atom, so this

In itself will generally cause the moan squaro displacement to be

larger for the surface (168. rthermoro, thie interatomic forces

may have different coupling constants git the surface than in the

bulk. The environment of a surface atom has different symmetry

than that of an interior atom, and this may load to an anisotropy

of the mean s~quare displacements at the surface even in cubic

crystals.

To aali.uXata the zop square displacements we assume initially

that tkz 61splacetzent comipoi~ents satisfy harmonic equations of

heeu (4~)$s the at-th Cartesian component of displacement of 'he

xth aton iu th~e 4.-th unit call, a ILs the *ass of the X-tbh kind of

4%zand the o 3Xt.x;4.'x') are tha haxLmomic coueelln coefficients.

-~: Uakins tretmmforzat1*n

(22
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where the D(tx;C4'x') are the Olemants of the dynamical matrix

defined by

D" tXCV'x) - CmX: XI 44(tlx;C-'x') (224)

Tho presence of the free surface is reflected in the values of

appropriate elements of eithor the coupling-constant maltriz or the

dynamical matrix.

The dynamical matrix can be diagonalized by means of tho, nor-

mal coordinate transformation

vrQ~X) 0 oc (X)QP (225)
pp

where aep (tx) is tLxc-th component of the oigonvoctor of tho dyna=-

ical matrix for the p-th norm al =ode and Q Pis the mormal coordinate

flor that mode. Then

(U(U U/ e 10 (X'~ lI (226:,

where we have used the fact that

(IQI 2) 2

where wPIs the trequency of normal mode p and Z(w p) is the r.,aan

energy of the m.ode given by

p(w) - j w coth(fr)./21kBT( 29

The mesn square dlzpiacement conponent can now be written as

(U (1/2 B jo (;4tQ)j( Ma/23
p) p p

Alte~rns~tivoly, iisiiig a well-knoiin theorem of matrices and Eq.

(229) we can rwvrite Eq. (230) di~oectly in tonea of the aynaancal

...........

'ýt.



(u (h/) 02m )[D-Icoth(hDf/2k T)' (231)

At high and low temperatures, via have the limiting results

<U2(Wx) - (kT=XC -1 '~ > 9(233a)

2 -(u (Lx)) iv (h/2mY?)(Di~ 009-O (3b

For a monatomic crystal, the mean square displacement is independent

of the atomic mass at high temperatures and varies as at low

temperatures.

in actual calculations, it is convenient to introduce periodic

boundarýy c%)vditicns in ~the two directions (say, the 1 and 2 direc-.

tione) Parallel to the surlace and ;rxn associated two-dim~ensional

wave vuv-tr q - (q, 2 . The eigenvectors then have the form

~ .se (' 3 ;qlq) (233)

-I -s týAP : )f unit cells In a surface layer and j ides-

~ ~rgive q1 q~.A reduced dynamical matrix

can be 4s,ýý Im'ents atre specified by

ED(qlq N) - %OD(x Lý'e e~ 2q 2-L-L)

2The alternative expressions for (uCZx)) -c~an now be rawritter. as.

- .. ~ - (W~Lx) Wit~~ Noj I~ *3>] (235)

and.

(u~C.X) - (/ai x ) ED(q)coth~tat$(S) /ZcBT)] 2
XS(4y- (h2 N [D (23C

-3 xa,
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If L is the number of layers In the crystal, the size of the reduced

dynamical matrix is 3rL x 3rL where r is the number of atoms per

unit cell, whereas the original dynamical matrix is 3rLN s x 3rLX I
For a crystal 20 atomic layers on each edge, the reduced dynamical

matrix is smaller by a factor of 400 than the unreducod dynamical

* atrix. One can save' considerable computer timce by working with

the reduced matrix. I *

We now discuss specific calculations. An early theoretical

discussion of eurface mean square displacements was given by

lKalashnhlcov(169) who used the Dobye isotropic continuum model.

He found an anisotropy of the surface mean square displacements

in qualltative agreemont with the experimental results of Zansha

and Ralashnikov (14 3) on silver. Recently, Dennis and Hubor(170 )

have given theoretical expressions based op the continuum model.

The first lattice-dynuzical calculation was reported .by Rich (
171)

who used a nearost-n'~igbhec modcl t9 study the (001) surface of a

simple cubic lattice and found a 10-30% larger mean square displace-

ment, for a surface atom than for an interior atom over a temperature.

The anisotropy of the mean square displacement at the surface was

net revealed by Rich's calculation beecause of the special character

* of his model. Addi.tional CAICUlations based on a nearest-neighbor

model have buon carried out by Corci--vci and coworkezs 1 7)b

Cely., 7 3  and by Kottori and Singal.( 17h4lterathr

considered finite microarystallites and caltulated the mean

3quare displacements for stoms on surfaces, edges, 'and corners.

As one might siiriise, the mean square displacements increase

zucceseivolW fro= surface to edge to corner. A related problems- -

th* meani squars displacements of atoms on stops on surfaces-

4 ''
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bas boon attacked by &lasri, Allan, and Dobrzynski (114 ~for

a l00) step on a (001) surface of a simplo cubic crystal. using

the 1Rosenstock-Nowell. model. The~y find that the ratio of neun

aqiiare displacements for an atom on the stop edge 'and an atom

on the flat surface is - 1.3 at temn-3ratures comparable to the

Dobye temperature.

Thiradudin anid M .elngailis (175) have studied thre (001) surface

ofa simple cubic lattice with nearest-and next-nearest neighibor

central forces which is isotropic in the long wavelength limit.

Their procedure is based on the Green's function formalism of

Section 3 ýP w~tlu the surface -'a 4reated as a perturbation on an

~b.-~-seperfect periodic crystal. The. mean square diAsplac~ement

component of an atom at lattice site -t (only one atom per unit cell

is assumed) Is given by

ukkjkk'j
i~kkl - ii

where u(Vk~kj , 2 is'given by Eq. (206) anad W (2akTh

-- Vit: n. an integer. In the hihtmeauelimit, Eq-:3) e

due to

(k TNm) okj~e(k,'')

a-k--- )6 t*W~k9 tI".4&.

w) '- 0.Usr -



displacements for their model numerically on a computer. In addi-f

tion to the features found by Rich, (171) their results indicate

that at the surface the Debye-W1aller factor is anisotropic with

the component of moan square displacement perpendicular to the

surface significantly larger than the parallel component. The mean

square dispiacements approach the bulk value very closely at five

or so atomic layers from the surface.

Calculations based on the high temperature limit of Eqs. (235)

and ( 236) have been carried out by Clark, Herman, and Wallis (176

for a nbarest-neiglnbor central-force model of a face centered cubic

lattice. The (001), (110), and (1ll) surfaces were studied. It

was found that the normal component of mean square dispilacement

is about double the bulk value for all three surfaces. The (110)

surface reveals an anisotropy in the tangential 'cordp;nerits not

*found in the other surfaces. This anisotropy together with the

rapid fall off of the mean square displacement with jncreasin&

*distance from the surface are Illustrated in Fig. 13. The *

results for this surface are summarized in Table 3 and comparedI

with tho experimental results of MacRae~ 4 for nickel.

Table 3 . Theoretical and experimental mean square

displacement components (relative units)

for atoms at a (110) surface and in the

bulk of a fcc crystal.t

t 110) (TOe) t00l) Batt

Theoretical 0.80. 0.64 0.86 0.40

Experimental 1.41 0.63 1.41 0.45

17he zgeeoment bevweea theory and experiment Is qualitatively satis-

factory, but quautitativel-. leaven somtethziug to be desired. Since
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the nearost-neighbor model gives a reasonable -Pit to the phonon

dispersion curves, the discrepancy probably lies elsewhere. One

possibility is multiple scattering effects.. Another is that the

force comstants at the surface are different fromethose in the

bulk~. This possibility has been Investigated by 1Wa~lis, CMark,

ancl Herman(17 who found that 'agreement of theory with Yac~ao's

data can be significantly improved by changing .Jto surface forceV:constants on the order of 50 per cent. FUrther work is requiraex,
however, to establish whether such changes are meaningful. As

mentioned in See. 2, , Clark at al~ 2  have calclilateo changes

of 25-30 per cent in the surface force constants for a model of

iron (bcc lattice) with niearest and next-nearest neighbor Lennard-

Jones interactions, so relatively large changes at the aurf ace do

seem poqssible. 08

Recently, Rovida, Torrini, and Zanazzi have used a

Iicrse interactio.1 potential to investigate the (110) surface of

nickel. They allow for surface relaxation and thus take into

account force0 constant changes near the surface. Taking intot

account surface relaxation leads to sign.ifi-cant improvement in

the agreement between the calculated mf.an square displacengents

and the experimental results of MacRae,

At temperatures sufficiently small compared to tho Debye

temperatu~re, tho zean square displacement of an atom should ex-

4 - hibit quantum mechanical zero-point notion effects. This behavior

has been revealed in calculations by Wallis at al( 162 ) based on

Eqs. (2:35 ) and (236 ) :for the (110) surface of P_ face-centered

cubic lattice with ne2Xegt-neighbor nentral forces. Additional

4e
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calculations of, the temperature dependence of the tan s~quare dis-

placen-onts for a :acc-centored cubic L.'ittica have been carried out

by Allen and DeWette(25 )~ who trqatsd the (100), (110), and (111)

surfaces using a model involving LonnardI-Jonneu intcrnctions' be--

tween mll pairs of atims'. In a subsequent paper, these Puthors-1 ))

point out that the ratio of surface to bulk mean squaro displace-

Zents is a nearly universal function of T/GD. Their results are

shown~ in Fig. 14 . The larger value if~ this ratio at the higher

temperat~ures may be attributed to either the heavier weighting of

surface codes at high temperatures thdn low temperatures or to the

earlier onset of zero--point motion in the bulk than at the sur-

face as the temperature is decreased.

In the viork just mentioned, some account of anliarmonic effects

was included through the use of the 0;ýsiharmonic approrximation.I Thbese affects tend to increase the surface-to-bulk ratio through

decreases in the surface force constants. A more complete treat-

ment of santarmonic effects is contained in the molecular cynamics

calculation of Allen, DeWette, and Rahvian ( LO)who solved the

equations of n=ot-ionr on a computer for atoms interacting with a

ILennard-Jones potential in a fcc lattice with (100)1, (110), 6rf

(111) surfaces. The surface mean square displacements at hall

the melting temperature were found to be 10-20 per cent larger

th,%n those calculated using lattice dynamics.

The calculations described so far have either boan restricted

to nearest-naighbor interactions (Rich 1 7 ) or have suvolvod

central forces so, that Cauchy's relation on the elastic constants

M,/.ids. A more goner,.l nodel conaisting of nearest and

Is I

UA -4
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next-rnor.t neighbor central forces plus angle-bnigitrc

tions involving pairs of nearest nelghbkors has been employed by

WallIis, Clark, and Herinan( 181 ) to b o00) surface of a fcc

lattice in the high to' .peraturo limit. The force constants can

be chosen to give an exact fit to the elastic constants for a

given fcc material, and Cauchy's relation need not be obeyed.

The results for the ratio of surface-to-bulk moean square displace-.

mouts are remarkably independent c- the material for the normal

component, ranging only between 2.01 and 2.03 for Al, Pb, Pt, Pd,

Ag, Au, Cu, and Ni. The ratio for the parallel comporent shows

more variation, ranging from 1.21 for Au to 1.52. for Ni. The re-

sults for the normal component ratio nra. in reasonable agreement

with experiment (cf. Table I. ) for the (001) surface 01'.Cu and

Ni, but are only About one-half the experimental values for Pt

and Pd. The latter discrepancy may indicate weak binding of the

surface transformations can take place in Pt( 149) and Pd(1.50

A model similar to that described kibove but including third

neighbor central forces has been used by Wallis and Cheng ( 182)

to calculate the temperature dependence of the mean square dis-

placements of atoms; en the (001) and (110) surfaces of chromium.

The result for the surface-to--bulk ratio of the normal components

at the (110) surface is in qualitative agreement with the experi,-
(160)

mental results of Kaplan and Sozaraia, but quantitative

agroenont will require inclusion of multiple scattering effects

or tozperazure-depeadont changes in the surface force Constants.

The result for the ratio at the (001) surface In the high tempera-

* * -ture rogize is significantly less -than that 1'tn A-zsiprizent lly
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by Tabor, Wilson, and Bastoo, M6)Vore wrork is required, both

experimentally and theoretically, on this prosblem.

An interesting approximate procedure for calculating mean

square displacements has been proposed by Masri and Dobrzynski..(83

The dynamical matrix D) can be written a~s the sum of the diagonal

* ~part d and the otf-diago~ial part R:
D - d+

If Eq. ( 239 ) tos ubstituted into Eq. (231) and the result exr

panded~in a matrix j;ower series in R, the i.osult for the first few

terms in the eioansion of the mean square displacement Is

2 F.(% -) (ft/2-o ) c'oth a
x 

+-

+ ICR) Vdzcoth a + -9 (Y)fI'ST)f 2 sn 2

3
+ O(/k3 T) 2 coth a.. sinh72

1(240)

where t t~di/2kjT. Since it is very easy to calculate the square

root and other functions of a diagonal matrix and since only non-

negative integer powers of the nofr-diagonalI matrix R are required,

the right-hand side of Eq. ( 240) is readily evaluated. )Iasri

and Dobrzymski treated the (001) surface of a. simple cubic lattice

using Rich's xModel 1) and obtained results accurate to about 20

per cent. In hic thesis, liasri (184) has employed this procedure
* to calculato the mean square displacemonts as funqti'ons of tqmspera-

tura for ato%= on various surfaces af a number of face-e(ntered And

Jill-
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body-centered cubic metals. This work has recently appeared in

papers by Masri and Dobrzynski( an the face-centered case

and by Dobrzynaki and loaan' 186* of. the body-centured case.

The procedure has also been applied by Theqten and .Dobrzynski( 18

to the calculation of mean square displacements oil atoms on the

(100) and (111) surfaces of diamond, silicon, and germnaniuma.

The effect of removing rotational invariance from the force-

constant model has been studied by Musser( 188) for the (001) our-

face of a ice crystal. The non-rotationally Invariant non-centraxl

forces were used. Rotational invariatce vas then imposred

by modifying the surface force constants using thp procedure of
(42 )

Ludwig and Longoler. %ussor found that the nvx-rotationally

invariant model gives larger mean square displacemqnts thun the

rotatinnally invariant model. For the perpendictilar component of

Pd, the incr~ease is rather sizeable, -.31, while for Ni, it is

much less, ý0* Musser exploited matrix partitioning methods te,

reduce the size of the matrices to be inverted.

Thooretical studies of mean square displacements of adsorbed

atoms have been carried out by several workers. Dlouh2 (189) has

(100) surface of a simple-cubic lattice. Allen, Alldrod.0, and

Doe Votte (113) have employed the Lonnard7Jones interaction to Study

the (100), (110), and (111) surlaces of~ a monatomic face-centered

cubic crst-il. Ralaxation of the atoms near the surface Wa3 takOU

intc, account. They lind that the mean square displacement of the

adtorbato utom ic enhanced or depressed according to whether the

adsorbate atomic mass ia smaller or' larger than the substrate

- ,4
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atomic mass, respectively. The effect increases as the temperature4

is lowered.
* (190)* RacentlY, Theeten, Dobrzynski, and Domange'~ have studied

the (001) surface of WA with a (2x2) adsorbed layer where the

absorbed atoms are S, Na, Cs, or 0. They calculated the mean

square displacements parallel and perpendicular to the surface

for the adsorbed atoms and compared the results with experimental

data. They find that the adatom particularly affects the "extra

spots'--e.g., ffl)--but not the ordinary spots. For S on Ni (0011)

Theeten et al. coi~cluee that the Ni-S force constant is larger

than the Ni-Ni nearest neighbor force constant.

The theoretical work discussed so far has been restricted

to non-ionic crystals. Rececntly, Chen, Alldredge, Do Wotte, anc.

Allen~19 have reported calculations for the (100) surface of

NsCl using the rigid ion model. Interplanar relaxation nezr the

surface was allowed, but was assumed to be the same for cations

and anionsa. The dependencos of the mean square displacements on

*distance from the surface and on temperature are qualitatively

the same for cations and anions and also the same as for non-ionic

crystals. However, the magnitudes of the surface-to-bulk mean

square displacement 1ratios are about 20 per cent smaller thbanI

for non-ionic materiuls.

~"'4
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D.Moan Square Velocities of Surface Atoms

Clostely related to moan aquaro displacwuntu aro moun uquaro

velocities. The mean square velocity of an atom is in principle

measurable through the second order Doppler shift (192) ±nthe

MWssbauer effect. The energy 2 of the emitted gamma ray is shifted

by an amount AEZ given by

)/20 (241)

whore (6 ) is the mean square velocity of the emitting nucl'eus.

By experimentally measuring both E and hS, one can obtzin an oxperi-

mental lalue for (0 2 . Such measurements can be used to obtain

ipformation about the coup~ling constants between the active atom and

its neighbor S1 9 3 ) The procedure has -the significant, limitation that It

is~ restricted to suitable radioactiv,.ý utoms such as 57 e and19 n

Theoretical expressions for the meoan square velocity can be

obtained in a fashion similar to that for the mean square dis-

placement, In a normal mode otf vibrati-za of fro~quency wothe.

volocizy ind displAcement components of atom 4k arta related by the

equatio~n

t (X) i4tL U~AK) (242)

Consaquoratly, the~ expression for (fk%40~x) analogotis to Sq. (230 )

taken the torm

p 10 (401 2)4



Transfornivg this oquatior. using the theory ot matricos, we obtain

(-1 (h/2inŽD coth(hD&/2kBT))~~x (244)

Equations analogous to Eqs. ( 233 ) and (236 )follow Iron the same

approach.

1It is instructive to consider the expansiorf of Eq. (244)

appropriate to high temperatures:

aDt + L3L.U k 1x (245)

We note Ithat in the extreme high temperature linit, the mean squarcý

velocity has the equipartition value kT?/m which is independent of
'C

the position of the atom relative to the surface. Tho correcticon

term in I/T is proportional to the dynamical matrix D, SQ experi- -

mental measurement of this ter= will jive the forceý constants at

dfie surface directly. The primary obstacle is the ortreme difficulty

of making such experimiental measurements 0 'tr surface atoms. (16 -9)

At low temperatures, the expansion of 1 ne me.-n square volcoity s tarts

(0 (4x .... C (246)

the' zero-point velocity consequently will depend on the prczmimty,

of the atom to the surface through Vie D factor in Eq. ( 246).
1flo situation is illustrated in Fig. 15 for a one-diteons'ional

monatomic lattice with free ends.(S The moan square 'tetocity

is sealler for the and ato=ms than for the interior stogs at' a 7

consequence of the sualler number of inuteractiots iavoiviaag tbe end

*, at';mS conpared to izterior arouas.

V-0
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14aru~dudin And Molngahllia(175 hnvo doevlopod oxprosasions

for the neoi. qquaro velocity of A surface atom in a~ Bravais lattice

using a Green's function approach. The result is

(a 2 (AO~ (kST/NM) X e~ (kJ~e~j') x
kI k'j' '

i(k+k')-x(.&) 
2)

?247)

whaor u(kj.,klcj;-, 2 ) is given by ift, (?06 )with ;j (2rtnk~T/?)

ard n an integor. High temperature owpansioips such as Eq.*( 245

can be derived from Eq. (247).

Detailed calculations of mean square velocities for atoms v.1

a (110) surface of a fcc crystal have baen cArried out by 'Wallis

et a1l-l'-using a nearest neighbor central force model.

Anisotropy-abows up only at low temperatures, sinco e;ach component

bus the eý4tipvtrtition value kT/z at hiirh temperatures. The smaller

numbor of box..Iz which -connect a surface atom to its neitghbors than

connect a bulk ato* with its neighbors leads to a smaller mean

sclikgro volocity for the surface atom at low temperatures.

*Very few exporisontal invastigations of the second-order

Doppler shift for surface &to=s have b~on made. Allen~ 165)

studied the temperature depandeagof i bis shift for 57pe nuclei

both in the bulk~ and on the (100) and (11l) surfacesl of~silicon

and found that a surface mean squarza velocity r~ughly five per cent
less than In the bulk. Similar qual-ttreest aelenoh

~ -taedby Burton~1  l or 57*on tu~saten and by Godwin~ 2

tor ~Fo on silver.

~q
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4.* INELASTIC SCATTERING FROMf CRYSTAL S1JRFACW3

A. Introductionl

A very attractive method for determining surface phonon~ onergios

is the inelastic scattering of particles such as electrons or helium

atoms from crystal surfnces. Helium atoms would be par~ticularly suit-

able, since they ure strongly scattored by the surface and since

thoir energy is on the order of millivolts - i.e., in the range of

phonon energies -when their DaBroglie wave length is on tho order

of a typical lattice spacing. Unfortunately, the experimental diffi-

culties are rather severe. Neutrons are of little use because they

penetrate dee oply into the crystal, Electrons do not have the favor-

able energy - DeI~roglio wave length relationship of helium atoms but

are experimentally more tractable, and some success has been achieved'

by their use.

S. Theoretical Development

Formal treatnents of the inelastic scattering of piarticl.es from

crystal surfaces have been given by Cabrera, Celli, and MJanson,19

Cabrorn, Celli, Goodman, and.M!ansonf,18 Gomn 9 Roundy and

'Mills(20 Lucas and Sunjico20 , and Evans and Mills. (0

Cabrozaot al fmployed the T-matrix formalism to derive an ex-

pression for the one-phonon reflection coefficient vhich was then

evaluzated~ 0  using a ilorse interaction potential. Specific-'

calculations were made for the cases of balium incident normally on '-4

silic~on 20  and on LiF 20  with the aid of a Debyo continuum

modol for the- lattice vibrations.. The diffarontial refloctio.t ce-

efficient as a~ function of emlai~ion angle exhibits a continuou4

vAriation.up -to a cut --off angle aad then a delta-function peak split

* ,1-
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off by a finite gap, Tho continuous part in associated with the

creation of bulk and mixed phonons, whi~e the delta-function is

associated with the creation of surface phonons (Rayleigh waves).

These calculations have baen extended by Gomn( 205) t

the case of He atoms incident on silver. The results are found to

be in reasonable agreement with experimental data of Subbarao and

Miiller. ( 206 One-phonon inelastic vcattering has been observed

by Fisher and Bladsooe( 20? ) for the Ito atoms incident on the (001)

surface of Lip. It should be mentioned that there is -an extensivo
literature on the scattering of atoms from solid surfaces which

has been a.iviewed recently by Goodman.( 208 )Additional references

iricludd the work of Chambers and Kinzer-29 and of Trilling(2

'who treat the solid as a semi-intinite elastic continuum. The dis-

crete atomnic character of the solid has been taken into account by

Arimand~ 1 and-by Boeby and Dobrzynski. 2 1

Roundy and MIills have developed a Green's function theory

of ono-phonon inelastic scattering of low-energy electrons from

- - crystal surfaces where the electron interacts with tho atoms of the

crystal through short range forces. The interaction potential energy

of the electron with the atom a% the position R(L) may be erxpanded

in tho form

~ -(1/0)~ V q.rWR o 248)
Z q 4z;~)o

v here it is assumed that the surface is in the xy plano., the sub-

script 4.r takes irto account that .tho potential for an atom near

the surface may be different than for an atom In the bulk, and n~

iz a quantization volums. The incidont and scattered electrons have

energies and aand wave functIons,1 and *awhich can be written

in the os

id*=fom



j U(6) (k ( &0) e Az) (246a

- k -Z W . ( S) ,z) (248b )

* where r, is the two-dimensional position vector parallel to the

surface, k~o and ks. arc two-dimensional wave vectors parallel

to the surface for the incident and scattered electron, and the.

f functions U (P P_,;yj,z) are periodic in ZS. Outside the

c crystal, Roundy a~nd M~ills write tr5(Z11z) in the form

- CU (2.19 )

whore &(k6S),.) is a Fourier ampnlitude, kc(c - 7=e -.(~s 2,J

andg is a two-dimensional reciprocal lattice vector associated -

with the surface.

In order to describe the phononb e~xitted or absorbed in the

S scattering procesa, it Is convenient to introduce the normal co-

ordinate trajisformation

u(4.) - J(h/2ft O ( 5
Ce~~ ~ p p (4)a p~~ 5p P

W where uQ.) Is the displacement of the atom at site 4. fro= equilibrium,

and ~ 4)are the frequency and eigenvector for the p th normal

zode of the crystal with the free surface, a~ and a -are the phonon

* *nnihjilstion and creation operators, and VU iz tho atomic mass. The

t~ranslational periodicity parallel to the %ýurface cAn -be exploited by

writing

:2,:
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W (ka) (252

where Nais the number of atoms in tbe surfacr layer and j specifies

;he normal modes for given value .of the wave vector I15 parallel to

the surface. The sum over p in Eq. (250 ) xow becames a sum over

Icand J. Ono effect of the thermal -vibrations is tD renormalize

the Int~eraction potential throu b a Debye-Wallor factor

74 q v 2 xp-((u~ ) TI (253 )

'vkore T denotes a thermakl average over a canonical enisemble.

The scattering cross~ section involves an electronic matrix

element. A convenient measure.of this matrix element is providedd

by the quantity

mj ~ ~ (k' k ) - .. IC q)

P4 RZI 1.0 ;4~s a~ z X
J .0

cel -r zUB(~s -- .

-1 0

'-'af

'-eel".
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Let us restrict our Pattentioa to phonoa emission. The equations

of conservation of energy and of wave vector componeot parallel to

th surface take the forms

P-8-e - tsw, (k U) (255

&ad

kis) - ko) -kv+ G (256

The specification of the directions of the incident and scattered

cle ctron is completed by the equations

k~)- - [2.P, (,(o))2) (257)

and

A significant oimpli.tication of th~e analysis occurs if one neglects.

the energy of tha phonon created relative to tho. energies of the inci-

dent or scatterad oloctroa. Then a Rayleigh wave &ad u bulk phonon

with the samo value of kq viill scatter an elect.-On into thle same

difi!erential elem~ent of solid angle d a

The differential cross section for one-phozon emission can be

ozpressed in the for=

d2a Nl

reek( is the m~agnituade of the scattered wsave vector, -I

n(W is tho Bose-Einstein occuprzion proba'biiity, A isg(.1. ;0-i

the Phonon spectral densit-, function, -

~N

~ý'tr -U
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ad kj + Q. Q, wih0 .)'specified bj

Q 4 1- B log m;... . 261)
z z z

The phomon spectral density function is related to the phouva Groon'w

function U (kw;4yZ4,;w) by

z I;) '1/TFI~ k4,&Iýz;w+ ini)) 6

For a particular direction of the jc.Axteredi electron fixaA)

znd scattering ooly frog the surface layer ot atoze., one ca'i trite to

a good approxImation

d a XC a~w) Q q A(k,;O10;w)26

vhorc X ts i.nd-apGndeut of the energy 1o~ss w. Roundy and glills have

*aluated the v, dependence of the cross suction for a (100) surface

of a 9 c c crystal vith nearest neighbor cent~ral forces. They made

very simple approxiinations for the periodic parts of the electron

wave functions and the Fourior-t1iansforrod poteintial v(q). The re-

suits are shown in Fig. 16.* The delta functioa pe.*k Is associated

with the excitation of Ilayleighwvaves, while the b~road hand at

* higher energy loss is associated with excitation of bul zodes.

2' . -~Thus, th surface zo4p dispersion curva can in prinallp2l be ditar-

=sined fron energy l*s, -sn for varioLs To date, howqVer,

.sQ 4;-
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no one has succeeded in carrying out such measurements for Rayleigh

aves.

We now turn to the case where the scattered electron interacts

with the crystal throug~h a macroscopic electric field. This case

concerns ionic crystals or covalent crystals with surface-indticed

effective charges and is directly comparable to experiment.

A classical macroscopic theory of energy loss by electi~ons due

to excitz-tion of optical phonons has been given by Fujiwiara and

Ohtaka(23 vho adapted the treatment of Ritchie(214) for plasmonts.

Cousider a slab of an ionic crystal between the planes z - 0 and

z - a and an elect~ron vith velocity v incideat on the slab. The-

energy loss per unit path len~gth is simply given by

dxF (&265)

here En is the electric field due to the medium alone. The total

fiold R ia given by S vcp where the potential cp satisfies the

equationa.
2

v 2 i 4iTe6G;, - t) e7.se'where26b

and E(uw) is the frequency dependent dielectric constant given hy

Eq. Z84 ). Equations ( 266 ) are to be supple~ented by the cocdi-

tions of c~ontinuity of the normal cozponent of the electric displace-

sent and the tangential compozents of the e'kectric field at the

boundaries of the slab.

It Is convenient to introduco the Zou~rier transform

cpr. t) (l/2n)3 ydk Sdw q,(rgsk ,z3)e 4'

44
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.1 Awhere rl end r are coordinates parallel and perpendicular to v,

respectively, and kL is a two-dimensional wave vector perpendicular

to v. Equations ( 266 ) can now be solved together with the boundary

conditions and the energy loss computed using Eq. (265) . For normally

incident electrons, the probability of loss of anergy hw can be

p- -k(1h0 dr1(e/V)-.-Emr v26

(e /T1 v) IL IM ::

2k~ .z

2(G- l)cos(uA/v) +Q 1 (-)'Xp(-Ia 1 a)q ý ~a)+ ( -a)-Op(

(E - 1)exp(-ka) - (e + 1)exp(k a

(269)

The first term on the right hand side of Eq. (269) corresponds to

excitation of bulk LO phonons and the second term to excitation of

surface optical phonons. Setting the denominator of tbe second5 tern

to zero gives ~ixactly the dispersion reladtion for th& Fuchs-Xliewor

surface optical phonons, Eq. (83 ), in the unretsrded limit.

Lucas and Sujc(0)have given a semiclassi'cal treatment of

the problem for polar crystals. The electron is treAted as a classi-

cal point part-icle vhich moves on a fixed trajectory at constant speed.

We have seen in Section 2 that the Fuc'"'-Kliover typo surface optical
oodo has an electric field which penetrates outside the crystal. The

electron couples to this electric field-and drives the lattice * The

Interaction energy between the electron and the surface monde in the

44M
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non-rotarded limit is simply efP(r) whore cp(r)is the elbctrcjstaticr

potential set up by "%he surface modo. The probability oý: oxcitation

of one or more surface optical phonons iz then calcula ted quantum

machanically. For a slab of thicknoss 2a, Lucas and SunjiC find

that the probabilivy of the electron losing an energy tw is

(27'P

where P 0 is the no-loss probability, w 4 are solutions of the :-.zchs-

Ilitover dispersion relation for surface opticcl phonons,

sinh(2kal - :h 2e(w)/(CE (Wn) - 1)1, (271)

k lkl and 6(w) Is the dieloc'tric constant given by Eq. (84 )

The quantities Q 4 are spocifiled by

22 sinh(2k.) ;-2ka________

+ C272

where n the ion plasza frequency and the vectors v - (vl,v) anod-

-t Qjvý,v) are the volocitios (rosolvod into components parall1el

and perpendidcular to the surface) of the incident and scattered

electron.

In general, Eqs. (270 )and (272 )describe a Poisson

distribution for the excitation of u phonons. For the caso of

specular reflection fro&t a very thick slab, the probabil-Ity for

the excitation of one phonea-berwari~

Z';
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022
P(W) % C G(ut'vj M6W -W)( 273)

2hwV 2 v

where G(Iv~I,v) Is a relatively slowly varying function of its

arguments. From Eq. ( 273 ) we see that the probability varies
with energy E of the Incident electron as X-1 to a good approximation.

This dependence 18 in agreement with the experimental results of

-N Ibach(215) on ZnO. For % review of this topic, see the recent~

article by Lucas and j~unjic'(216) in this journal.

A quantum mechanical treatment ef inelastic electron scatter-
ing from surfaces of polar crystals and covalent crystals with

surfa~ce-induced charges has been ki~zn by Evans and H~ills. O2

For polar-crystals, their results rc~duco to those of Lucas and

Sunjic In the specUlar case. For ci talent crystals, the surf ace

optical modes are always localized within a few atomic layers of

the surface. Evans and Mill~s Sind zhqt the angular dependen~ce of.

the one-phonon scattering cro,,s section is less for the coValent

crystals than for the ionic crystalo. Furthermore, the energy

dependence of the cross section for the covalent case is more

Complicated than the elderrandonce for the ionic case. These

differences can in principle be used to identify tfie type of surface

4 mode involved in the scattering. Recently, Evans and Hills(217)

have extonded their work to oultiphonon procousez.

C. Experimental Reosults

~ b Among the earliest oL-servations of surface vtbrational modes

- - by inelastic electron scattering is that at Boerocha, Geiger, aud

U,7



Sticke1l 218 on UiP. These workers used relatively high energy

electrons (25 XoV), but vere able to achieve sufficient resolution

to identify loss peaks due to excitation of phonons. They found

a peak in the energy loss spectrum in the region botween the long

wavelength TO and LO phonon frequencies and idontliied this peak

as due to excitation of Puchs-Kliewer type si~rfaco optical pbonons.

This identification has been confirmed by Fujivara and 0htaka.( 213)

Surface modes of a different type have been observed by Propst

and Piper( 219 ) who ebtudied hydrogen and other molecular species

adsorbed on tungsten using low-energy electrons. Loss peaks were

observed corresponding to the excitation of vibrational modes

localized in the vicinity of the adsorbed species.

Further extensions of the inelastic scattering technique have

been uchieved by Mhach ( 215 wiho observed surface'optical modes

in ZnO using electrons in the ranga 1 - 100 eY And resolution

-10 - 20 noV. For the (1100) surface, lbach observed loss peaks

associated with the excittation of 0, 1, 2, 3, and 4 surface optical

phonons. The intensities 1f(o-n) of the peaks are corveisteat with

* the Poisson distribution predicted by quantum mechanics for an

oscillator driven by a tit?4-dependont force X(t):

S(o-.n) - JG2no-IG2 (274)

G i1A2mWu)*%f dz a X~t(t)dt .(275)

0

This result Is also in agrpement with the =ore elaborate theory of

Lucas and gunjic.

I -tZ_
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In a subsequent paper, Ibach( 220 )studied the inela~stic

scattering of low-enorgr electrons from the f1ll) surfnco of

silicon and found a peak at 55 meY,. which is to be ccompared to the

R'-'an frequen~cy of 65 meV. The intensity of the loss peak is

relatively small compared to the case of ZnO, but is larger than

one would expect for scattorinq from localized atomic poten).Ials.

lbach concludes that his scattering is due to a macroacopic Ae~lctric

field d~vivod fr' a surface-induced effectivo Charges and

estimates thtt chazg. ..o be on the order of 0.1 a.

As ,,,ntioned earlier, inelastic neutron scattering is not

*partfcular'7 favorable for surface studies of lattice dynamics.

Hlowever, non tior~ should be z~ado of the work by Rieder and Hurl( 2211)

who studied fine powders of MgO. Using the incoherent approximation,

they flind deviuvi~ns of tho frequency distribution from thmt of

bulk crystals which suggea~t the p.wesence of both acoustical surface

modes and optical aurface modes (both Lifshitz- and Puehs-Kliewge'

_P --
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7. TIM~MAL DIFFUSE SCA~rERtlNG

A. Introduiction.

Thorvnal diffue3 scattering is a form of inelastic zcattorirng

which is quite familiar from x-ray difiraction. Not only do tho

thermal vibrations of the atomis lead to a gain or loss of energy

by tho incident beam, but also they 1ea%1 to a broadening or dif-

fuseness to the diffraction spots. Ordinarily, in discussing

thermal diffuse scattering, one ignores the echange in cnergy of

the ini1dent beam. This is satisfactory, oevtn lor low-energy

eleoctrons, if one locuses on the diffuseness of the diffractiobi

spots and not on'enei-gy 1lrss or gain, s~izco phonon ctiorgies are

(h02 eV and tho or-es-2= comnpared- to typical incident ele.--

tron energies.

B. Theoretical Development

A theoretical oxpression for -tha intensity-of first-order

thermal diffuse scattering has already been oxhibited ir. Eq. (217)

for a Bravai:; crystal. In terms, of th,-. correlation funation do--

fined by

C tt)(276)--

we can rewritke Ias

12 lo10o ~J -~v.~~ - X ~

-Mw

If we utiliko the norzal coordl ate transformatilongiven by Eq.

(225 ),then the correlation funcltion can be re i~ttem as-~

g-~ 4--
-0.Ls ¾t2
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where ?(p) Is the mean energy o1 mode p. Taking the crystal ouir-

lace to be parallel to te1-ad-drcinwe use Eq. (233)

and obtain af ter, some manipulation

12 -z~ ~~2 ~: eC )(I) (~34(J.

I 8002Z0(..)U

vector 0 3n eoohrie n

Appuniying ithe prevmtiosl a twodmnionad te reiopmarocal, lattccn

r~erite L'q as

I43 ,)-(~2)~QQ (q) coth . (281)

wlutro D(q) is defined An P4. (234 B.Ioth Zqs. (280 )and (261)t

can be convenieutlly uased for numerical calculations. We note a

rather general1 result that integration of 12 over q I ad Q2 Yields

a quantiTy whiclt is a lintear combination of m2sisqae iplcD

nents je'f. Eq. (235 ). ¶the seatter1xg is entirely fro the

surfaco layer, tha- integrated I2 is simply ý;roportlonal to the

4} - urfae atom mean square displ:"cmont.

The thermal dif uso~ zoattazini intanslaty caui ba viprevaed in

texrts of Oreen's funtions by'usiing th'm relatlons

~ý *

Aý



r e w p/kBT3±1_ (283)

n + (WvkBT/h) Xn (W P+W P 1  (284)

where w. 2tinkBT/ with n an integer. -Then FTCC,t./) can be re-

Vrrittau as

kBT' Q (285)

4kTi QQU(.cO.C,1,;0)as T- (286)

2t - 06 (287)
p ujý. 2

The surface can be treated as a perturbation on an otherwise per-

fect crystal. If the perfect cryst&l eigenfrequeno Los and eigen-- -

vectors are w(Ikj) and e~tci), then

-4t; N E' 25 e u (~,k'j'w) (288))

eali uarl~ j hwv (vlutd22wiht8)~d

wher u(Sc " wrstl Bis givh enprtue bym loqg (20l6g)s.er

sWaod. For dsca~tr--ing ony fr hav evau~ated lye wih h atdofe h

rosul1175

z9. '77 nd(85fr h MardinVng s istrpc odl

-w4~

SI (a/)&(Ql)"72

a2

__~~~~~_ -
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where q q I 4q a Is the lattice constant,

b -0 NsCkDT/Mc 2)a f~ 2 2Me-211(0) (290)

and c 2- Ls the speed of long wavelengoth transverse acoustic -waves.

Note that the intensity is proportional to the number of surface

atom~s and to the absolute temperature, An interesting feature is

the inverse proportionality of intensity to the distance q of the

scattering vector from the nearest reciptocal lattice rod. tBulk

scattering, in contrast, varies as l/q . Wallij and Maradudin

also found that the iso-int~ensity curves for the surface and bulk

cases are frequently different. This is illustrated in Fig. 17.

Another calculation based on the *isotropic model is that of

nuber~ who considered a slab of a general isotropic material
(98).following-tbo appronch of Stratton. H &ubei's result for the-

lutainsity of thermal diffuse sczttering can bn written as

12 1 ~ -2 2 2 8n2 1 2) 21(IS-Gk) [~jcos *p VQ1  ~ +T

where the scattering vector Q -r (Q1 ,%) U, V, a7pd W are

functions of the speeds of transverse, longitudinal, and suraac~e

2

2
aa f exp[-23!(O)3 and the prime on the s= Indicates that only the

* nminimum value 0f IS,-G istbeoue. Qualitatively, Jiubor's

result in siiailar to that of 'Wallis and Maradudin, but quantita-

tively It is larger by about g f~ator of 2. The '-rigin of this

i discrepancy bps tot been pinrzed dova.
* A numerical balczulation-of the thermal diffuse scattertre

f rom the (3.00), (110), u (1l1) strfaicen of argon -has- been carrIed

t ... .

-_- < - -
ý 
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out by DeWotte and Allon (2) using a Lennard-'Jones potential.

The olgenfrequoncies and elgenvectors for a slab 11 atomic layers

thick were calculated and then used In Eq. (280 ) to obtain 1 2'

The rceults are not valid in the immediate vicinity of the

reciprocal lattice rods, but give a better pict~ure of the situation

far from the reciprocal lattice rods than does the continuum ap-

proximation. T~ese zalculations have recently been extended by

Kesmodel, DeWette, and Allen (225 ) who have treated in detail the

(100), (110), and (1l1) surfaces of Xe. They included contribu-

tions to the scattering from the first-five layers of the nine-

layer slabs employed and assumed a geometrical decroase in the trains-

mission factor with distance from the surface. Kesmodel et al. iound

significant interference effects between layers leudi.ng to different

intensity distributions around different reciprocal lattice rods,

They also found an "extra" spot near the (04) rod for the (10D)

surface,

C. Experimental Results

Early observations of surface thermal diffuso scattering were

made-by Aldag and Stern ( 155 who studied the (110) surface of

tungsten with electrons in, the 230 - 700 eV range. They observed

an anisotropy in the scattering which they attributed to aniso-

tropic Burface modes.

A detailed study of thermal diffuse scattering from the il

surtace of silver has been reported by 34clinnoy, Jones, and Webb( 6

Those authors verifiled r- number of tho thieoretical predictions for

spurface- tharml dif fuse scattering. Thus, they fouind the predicted

inverse dependence of intansity on distance from the zearaost recip-

rocal lattico rod. 1uz'thormcre, the ratio of diffuve intensity ~ VW
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to peak intensity is proportional to the absolute temperature and
to the square of the zgnitusc½ pr the scattering vector. Finally,
the ratio of integrated diffumo sand Peak intensities is npproxi-
inavely proportional to the exponent in the flobyte-Waller factor.

In a subsequent paper, Barnes, Laigally, and Wfebb (227) dis
cusesd. experiments using the (1ll) surface of nickel. They ob-
served, in addition to the one-phonon scattering, a uniform back-
ground which is a function of energy and temperature. Barnep Pet al

*present irguments that this background is due to multiphonon
scaattering - i.e. , to higher order terms In the expansion in Eq.
(213). In the 6ase of the (111) surface of silver, the multi-
phonon scattering is relatively small. Lagally, Kgoc, and Webb~2~
have I~xtendad this work and have shown that kimematiC Intensities
can be recovered from LEED data by averaging the LEED intensities
at constant momentum~ tranai:.r. This procedure could prove useful
in deotrainatiorm of surface struaturea arnd surface Debye-Vallor
factors.

LI
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8. SURFACE ?.FFECTS ON OPTICAL PROPERTIES

In this section we shall discuss the effect of free surfaces

on optical propertios associated with lattice vibrations, In

par ticular, we shall discuss infrared absorption or reflection

and Raman scattering.

A. Infrared Absorption

(i). Thenratical Results

Since infrared wavelengths are large compared to lattice

spacings in crystals one can treat the wave vector of the infrared

adiation as negligible. Under these circumstances, the infrared

absorption coelficient of a crystal lattice in proportional to

the quantity (
229 )

1(W)-IVJf t4(R) H( (.R)dRf x

x 6(E fE 1 + hw) (292)

where R icands for the set-.of nucle,-r coordinates, and taro

the vkbrs.-ional wave functions for the initial and final states,

El andE f are the corresponding energy eigenvalues., v i is t30

Bolt~nann occupancy Zactor, and Z(R) is the electric dipole moment.

The dipole womont can be expunded in power sorios in the~

displacemaents of the ions from equilibrium d(~O: -

U-4
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%Tho copstant term 41o is of no interest for infrared absorption.

Tho torims linear and quadrztic in the displacements are, rospec-

* tivoly, the first order and second order terms. We shall restrict

our discussion to the first ordor terms, which are important in

Ionic crystals and are subject to strict selection rules if the

crystal is periodic.

The coefficients %0 (40~x play the role of effective ionic

chargas. Infinitesimal translational invariance imposes tho

*condition

0 (294)

In a periodic crystal, %0( 40x does not d epend on t., so

Map4(x) -o (295)

1zi many cases, the tensor %,(x) can be taken to be diagonal

Yoe) (296).

Wher IN A ~C.Car effective charge for ions for type x. Again

ionslderi~g a poriodic crystal, ono can expand in terms of the

znorn1-zoordinates QWc) instead of the displacements u(4Xo)

Ii B) ' N + 14 (kj)Q(kj) + **(9,

4 7h~-ore k(O()

that the coefficient 9 (kj) vanishes uninlssI 0 and 4 refers to

S9 -



the transverse optical branch,' This result is a consequence of

periodicity; when a free s~arface is present other modes can give

a non-vanishing dipole moment and infrared absorption.

A theoreticzal investigation ol the effect of free surfaces

on the infrared absorption of an ionic~ crystal was carried out by

Rosenstock~ 3 who simplified tfle calculations by retaining

only short-range f~orces in the lattice dynamics. The first order

dipole moment was evaluated with the aid of Eqs. (293),

(295 ), and ( 296 ).Tha use of Eqs. ( 295 ) and (296)

is'not s.trictly correct, but should be all right for qualitative

estimates. For i linear chain of N ions of alternating charge bux

equsl mass and neareat neighbor int~eractions, Rosenstock found for

the first-order dipole =oaoent associated 'with normal mode s,-- -

us uc/cos(cp,/2) s odd (299)

0 a seven

where ps GA&l/N a -0, 1, 2, 3# .. Nl and u0 is an arbitrary

amplitude. The dipole moment has a maximum for a If-! (the mode

w'hich has the maximum frequency w. and which would be the long-wave

length optical mode if tho~lattice -more made diatomic) and decreases-

in magnitude as s dcor'eases. The important point is that the dipolo

moment, and hence the infrared absorption, are non-zero for s *Ni

Tbus the free surfaces load to absorption in frequency rog~.ons not

allowed vith periodic boundary conditions. Talcing into account

tht frequency distribution, the absorption coefficient turns out

to bo proportional, to (w )32

VV.
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In a second paper, Rosonstock 21 treated two- and

three-dimnsonainl crystals~. The Coulom~b interactions wore Ignored

in tho lattice dynamics by use of the flosonstock-Nowoll m~odol(4 1 )

The smai difference from the ono-dimonsional coed-is the appearance

of critical points in the frequency distribution. Since the free

surfaces lead to a continuous distribution of infrared absorption

over the normal maods, the critical points produce subsidiary peaks

superposed on a continuous background absorption. This is in sharp

I contrast with the single delta-function absorption predicted by
poriodic boundary conditions,

Rosonstock has subsequently included the Coulomb interactions

inhis analysis. For the one-dimensional case 2 3  he finds that

dimensionsc3 he has calculated the frequencies of subsidll'ry

peaks using a model of NaCl-type lattices involving Coulomb inter-
actions and nearest-neighbor repulsive interactions. Rosenstock
found that the experimental values of the fundamental lattice ab-

sorption frequency for mayalkali halides are fitted better by a
subsidiary frequency than by the classiclal limiting frequency.. How-

ever, it 'As not clear that the model used is sufficiently precise
* ~ Ito remove all doubt about such an ideijtific7.tion.

IRecen~ly, iItss anid Roesok have taken into

account the different masses which the ions of difforent charges

generally have in an Ionic crystal. They furthermore Investigated

Ah eenec of the infrared absorption in various frequenc;

_-7
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that the absorption in a frequency interval containing the funda-

mental latticu trecluoncy itH proportional to thec voTiumo, but theo

absorption in othor frequency regions is'proportional to the surface

aroa. Thus, to experimentally observe the absorption induced by

the freo surfaces away from the fundamental, one should do experi-

ments on samples consisting of many thin layers to enhance the

surface-to-volume ratio. The experiments shoiild also be done at

low temperatures to avoid complications due to anharzaonic broaden-

ing of the fundamental. absorption.

Since the fundamental absorption of infrared radiation

by'& crystal is primarily restricted to small wave vectors, it is

reasonable to apply macroscopic theory in the frequency region

near the fundamental. This has been done by Engiman and Ruppin (0

who have discussed the optical properties of finite ionic crystals.

These authors have recently published a review ( 71 ):o the

situation. We shall take up only selected topics and refer the

reader to the Ruppin-Englman review article for further details.

We now consider the optical properties of finite crystals.

23
For spheros, eno can utilize the Mio theory. 236 ab~i nsorption
;,ross section 6in units of iTa~ R the radius) is given by

2 2~ (~a,'(71 -a~,l -2 Re be-jbtj (300)

J~(x) fxJ~(x)' J(x0) fxijL.(Xi) 3
- (301)

h (x Cxjx,)]

X0 N,-xO)

. . . ~'~JKg
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* ~ ~ I b E O1i )(x0 fXJ(x 1))2 - Eje,(Xa)[Xoit(Xo)7
, b,,M (302)

x- kol, X, k R, ko - EM w/cp k.i Gi W/C, e is tho dielectric

* constant of the medium surrounding the sphere, E 16 the dielectric

constant of the sphere, and J. nd k., are the spherical Bossel and

Hankel functions, and tho prima denotes differentiation with respect

to the argument of the Sessel or Hankel function. The scattering

cross section is given by

2 (23

(k R) C.-lI

.7-and the total (extinction) cross section is specified by

- ~& 2~+lRe~a+b )(304)
(k0R)

2 4-

IRuppin and Enlmn 71 have evaluated the extinction

cross section for spheres of XaCi. Peaks in the cross section occur

for excitation of the rarious radiati,ýe surface =odes charActerized

by t -1, 2,3,......as given in Eq. ( 89 ).For vary small

spheres,_R - 0, only the C. - 1 mode causes apvtociablo absorption.

tThis coda is in fact the mode discussed by Frhi:ý (7 Vhiioii1

has a frequenc~y W?, given by

2 ci

'IT C. ZE
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For small but finite R, the -t 1 mode I:roquoncy ha~s corrections

specifiei4 by the equations

W 2 (1) Eo + 2E 1A
-o --E(l~ (306)

WT E.+ 2E U(l+A)

S(:o + 2E:j e w2)2 (307)f

In Fig. IS the extinction cross section calculated for a I pjm

radius sphorb of NaCi is plotted as a function oT frequency. Thej

peak due to the t. I mode is clearly evident between the long wave-

leng~th transverse and lozgitudinal optical mode' frequencies. As

the size bf the sphere increases, additional peaks appear' at the

t. - 2, 3,.... surface mode frequencies and at bulk~ mode troquiencitas

lying just below wT.I~ ~--

Englman and Ruppin have also considered absorption by

cylinders1 For very narrow cylinders (radius -ljpm) and electric

vector perpendicular to the axis of the cylinder, there is a peakc
in extinction at a surface mode with frequency apecified by

W20 w 2(Eo+EM)/(E.+EM) (306)

so T oI

For parallel polarization, the extinction peaks at LWT* A related.

Ccussed by Rosenstock. (27
A Particularly interesting case is the thin slab. W~e have

aeon in Sectkon 2 that a slab exhibits surface modes of th~e Furwhs-

Kliever type with frequency specified by Eq. (83) These modes,

-X-~
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I houluver, are rnonradintive and do not interact dir,)ctly with eleo-

trornagnotic radiation, although coupling can be achieved by

special neana to be described later. The optical properties of a

alab of an alk~ali halide have beeni discussed b~y leirreman.(28

Yor radiation Incidaut normally on the slab, t:here Is the usual

absorption peatk at WVT- For non-normal incidence, B3erreman ob-

served an additional absorption peak at wLif P-polarization is

used (electric vector parallel to the plane of incidence). That

coupling should occur In this situation is clear, since the elec-

tric vector has a component normal to the surface and therefore

parallel to the macroscopic electric I i~ld of the longitudinal

optical phonon. A detailed theoretical analysis of the optical

propprties of an Ionic slab ham been given by Fuchs, Kliewer, and

(~39) (85)Pardee using a macroscopic approach and by Jones and Fuchs

uaing a microscopic approach.

In a second paper, Berreman(20 analyzed the effects of

nicroscopic pits and dones on tho infr~ared reflectance. He found

that those defects introduce structure into the reflectivity just

In the foregoing discussion, the boundary conditions have

beon handled satisfactorily either for the sitort-rarnge forces

I(Rosenstoc1k) or the long-ra~nge forcces but not for b~oth. Tong and

M1aradudin ( 30) and Grimm, M1arndudln, and Tbng(241' heve tachrled

the problem of handliig' the boundaryj i,*ditiona wkth both types *2

I forces.. The imaginary part of tbo dloloctrý' rwsponso tonsor

I &hich rel-tes the p;%l-ri.zstioA ta the extor'aal eyeatric fteld)

can bo writtelý as.ý

=!A
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E2)(w) (2n/hO) (e~w-l) fdt ei'w*(g ~,tMm (0)) (309 1) 0

wharo n is the volume of the crystal, 0 -lA/BT, M 4 t) is given by

Eq. (293 ) with the displacements ui 9 taken to be time dependent,

and the ;ýngular brackets denote an average over a canonical ensemible.

By generalizing the normal coordinate transformation specified by

Eqs. (250 ) and (251 ) to two atoms per unit cell and.wyriting -.ie

time dependence of the creation and annihilation operators ar

and

a (kt)-a t( -k *OePi ýlt (311l)

one can reduce the expression for :~(2(W) to the form

(2)- r. f (312)

0

v~horo xg (DXIJ.('31
(2)

absorption. The tetragonal syamatry inf the slab is reflected in

(2) by the fact that E:;()* 0

,Iheae calculations have been exctended by Grimm, M1aradudin,

(241)and Tong who itcluded the real part. of f w) For a 100-layer
;IV-

slab of ?a&l, thoy find that the diagonal componenst can ba repro 4~~~. -

snated by 129j

(2. 22s

*+
(2.4l~6? 2 -~ 2.-iv~ ~-& -~4
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28.79
0 (315)* w)Z (2.29ft 0 , W - Y

where w.)~ 10 1 sec -1 and y is tho damping constant (,.0.02w, at

room temperature). The poles of E(XW) in the limit y-o are at

(T- 2.491w40 and at a transt'erse surface mode w TSM 2.416.o 0 . ibisa

surface mode is localized wit~hin a few atomic layers of the our-

face and is distinet from the Fuchs'4Qiewer mode. The zero of

Ezz(w) in tho limit y-ooi . 5.837w0 . F~or an anglo of inci-

dence o~f 360, the absorption coefficient is plotted against fro-

-quency in Fig. 19. Peaks are clearly evident at w w and wL.

As morhtioned previously, there i.s no direct coupling of the radia-

zion to tho 1'ucha-gliewor mode anxd hence no peak in absorption at

its frequency.

Uiil U.perimental Results

I A great many workers have mado Infrared absorption

1. mseasurements of very fine powde~?s of var-ious matz-ianls. we con-

I sider only a few exa~ples and refer the reader to the review
1 (71)article of fppnndEnglman for further references. Typi-

c 'ly he powders are suspended in minqral oil, poly~sh4no

KBr disks and are found to give peak absorption at a frequency

j higher than v.. Assuming tbazt the particles can-be approximated

> ,by spheres, these ri-sults are entirely consistent with the
L j K.Englman-Rtappin result that the peak absorption of very small

spheres ocezurs at. the surfaco utode frequency given by Eq. (89)

rathor thna .. Thus, for CaO; 'McDevitt ad (an~242) ob-

servei~d peaks at 400 cvý_ and 290 ciý * These are c1l)so to- tile
~--~-calculated surface mode frrequs~y of 40-2 ci and the bulk

A-A
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transverse frequency of 289 cm~l Similar results hr~ve boon ob- W
tamned for NWO, 14g0, and a va~riety of oore complicated crystals.124) (441

HAartin has studied fine powdera of KCI~ 3 and X~

and observed absorption in the region between w nd w L' TheI
peak in absorption occurs at a somewhat lower f requency than wF

"-This may be due to absorption by t,>l modes or to the non-spherical

shape of the crystal's. Genzel, and MSartin bave recently mp.Ano

inf rared measurements on finely powdered CdO cont0.ning free car-

riers. One may therefore expect coupled surface optical pbornon-

surface plasmon modes. The experiments indeed reveal two rceso- j- --

nancos in the absorption coefficient as well zs An aritiresonance

which is also predicted by theory.

Systems of particles vhichi can be approximated by cyl-

inders rather than spheres h"ave also been. irvestigated e;ýperimcnt- -

-ally. Pultz and Hertl~ studied very thin fibres of A-SiC and

observed peaks at w..and at the surface mode as predicted by the
(al?

Englman-Ruppin theory. Hass carried out an interesting stiidy-

of the transmittance of thin films of NaCI and of LiF deposited

* on diffraction gratin~gs. For radiation with electric vector ~

polarized parallel to the grooves the transmittance had a minimum

* at aTwhereas with polarization perpendicular to the g,.covcs, t~he

minimum m~oved to a higher frequency whose value corresponds to

the surface o.ode in an elliptic cylinder with axi-al ratio of 30.

We have alluded to Berremars's work oim the effect of pits

and domes on the optical properties of a crystal. Another type of ..

ijurface dofect which must be considered is an izpurity atom ad-[

sorbed on the surface. Some years ago Pliskir. and Eischcns(2 8

studied the infrarod absorptiom associated wizh hydrogen adsorbed
,Zf
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on plhtinum. Th.,y Observed two absorption peaks which they

attributed to two different types of bonding. The vt.brational

origin of the peaks was conf irmod 6iy the isotopic shift when by-

di gen was replaced by deuterium. In another paper, Etschens and

Pliskin (4)investigated carbon monoxide adsorbed on platinum and

found two absorption bands at 476 cm1 and 2000 c. . If it is

assumed that t"~ CO molecule is bound to a surface Pt atom by at

C-Pt bond, then the force constants for the a-Pt and C-0 bonds

* can be determined using the theoretical analyses of Grimley(5 8)

and of Masri and Armand. (38)

It has been pointed out that radiation does not interact

directly with the Yuchs-Xliewer surf ac6 modes of an isolated ionic.

* ~slab' with perfectly planar surfaces. This is a result of the dis-

persion burve for the Yuchs-Kliewor modes lying to the right of

the light line w-kc. However, by suitable experimental tricks,

it is possible to make these modes accessible to exporimantal

k study.

One procedure is to study the infrared reflectance from

a sample upon which a &rating has been ruled.. If the apacing of

the grooves is d, then the wave vector cosponent of the radiation

parallel to the surface Is augmented by 2iin/d where n is an

inte.-er. Thus,

ki (w/c) sia.9 + 2irn/d (316)

'whe"- is the angle of incidence. The reflectance curve exhibits

dips at frequencies specified by the surface polariton dispersion

I curve and Eq. (318 ). From the observed roflectance dips, an

experimental dispersion, curve can be deduced. This technique has

4 : been employed by '4arschull, Fischer and Quoi~sser to determaine

.5<1
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the dispersion curve for surface plasmons in n-lnSb and by Ander-

son, Alexander, and Boll to investigate the interaction oal

surface plasmons with optical phonons, also in n-InSb. i

An alternative and perhaps more convenient procedure

is attenuated total reflection.' Ruppn23 suggested that

this technique wouid be useful in the experimental investigation

of nonradiative surface polaritons. The incrementation of theI

wave vector is achieved by placing a prism adjacent to the sample

of Interest and separated from the sample by a few microns. In

the absence of th~e sample, the radiation is totally internally

reflected in the prism. In the presence of the sample, the ex-I

ponential tail of radiation penetrating outside the sample couples

with the surface polaritons in the sample. Coupling is possible

because theo effective wave vector of the radiation pýarallel to the

surface is given by

kg.Wec) n sine (3a

where a is the refractive index of the prism and a Is the angle of

incidence in the prism. Since n--1, wave vectors to the right of

the lfght line in vacuum can be achieved. This technique has re-

(254)cently been exploited by Miarschall and Fischer' who determined

the dispersion curve for surface optical phonoas in Gap. An

independent investigation --ong the sape lines is that of Oryksin,

Gerbshtein, and iMirlin (255) on NaeI an'd Cap.

Bl. Emuman Scattoring

Ina Ranan scattering, the frequency of the scAttered radiation

is down-shifted (Stokes) or up-shifted (anti-Stokes) iroz the

1--4
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*frequdncy of. the incident radiation. The advent of high intensity

lasers has stimulated an. enor-mcus. upsurge of experimental investi-

gations of the Raman effect in !aulk cr~ystals. However, the use

of the Raman effect to study surface phonions is in a very rudi-

meatary state.

Raman scattering can be ascribed to the modulation of theo

electronic polarizability by the vibratiOns of the ions. noe in-

tensity of Raman scattering at frequency w is proportional tb the

quantity(3

i (Yw) - "n('tl1PO vVvi~v'p-1J)] (bw-3 ~ ) (1
v &YAv 6(LW~v

where v, v' designate the vibrational qnantmi num~bers of theý zrys'-

tal, wo Is the incident frequency, hw is the change in vibra-

tional energy of the crystal and P ayis the electronic polarin-

ability tensor. The polarizability cart be expanded in power serion

* in the ionic displacements. WAIOS one transforms to mnormal coor-

dinates QZkj), one finds for a bulk (periodic) cr~ystal that only

optical modes vith kftQ are active in the Raman effect. The polar-

* ~izability expannionR can then bo writtzn an

P P()+~ . (319)

wh~ere .1 runs over the optical branches. It turns out from symmetry

considerations that crystals such as NaCl with every atom at a

center of inversion do no't exhibit a first-order Raman effect.

However, crystals such as diamond which have centers of inversion

midway between pairs of atoms doshow a first-order Razan effect.* I Tho crealtion of a free surface can result in the elimination
of centers of invorsion symmetry and lead to surface-induced Raman

77



scattering, A theoretical di.scussion has beon given by Ruppin

and Enginan(26 who treated the ease of the incIdent beam perpen-

dicular to a thin slab and the scattered beatn. at an angle 6 to

the. n~ormal. Conservation of energy and moment=~ components parallel

to the surface yield the conditions for Stokes scattering

W1- w;2 + Ui (320)

q§-ka - jk21sin 8 (321)f

where the subscripts 1 and 2 refer to the incident and scattered

radiation and the unsubscr5jtvd quantities refer to the phonon.

From Zqs. (320 ) -and (3:21 ),o~i f inds

Cqua
sini 6 (322)

This relation between qj and 6 can be used in principle to detor-

mine the dispervsion c~irve w(qu9..

Ace,ording to flujpin and Engloan, tho Fuchs-Kliowor miodes of a

-lab of NaCi-type crystal will not exhibit first-order Ranan

scattering, since the displacement patterns of theso surface =odes

arc similar to those of the bulk longit.udinal and transverse opti-

cal modes which s.re Raman inactive. For crystals which are Rarman

active in the bulk, however, the Fuchs-IKliewer surface modes should I-

be Ravx-an active.

A calculation vhich emphasizes the effect of the surface on

the short-range interactions is8 thaz of Litzzan and Cel who

analyzed the Rosonstock-Newell zodel of a NaCII-type crystal with

a (001) surface. Following the approach of Loudon,(2 .Litzman

and Coly show that the transition probzibility *of first order Ranan
scattering "-to unit soliid angle can be expr~essed as

ýY -
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2h 2 a4w n(n +1)

nW m W0 ý E

xl A C,,(ýx)A),v (kX I') ) X

X im IM '&.' x'; 2,i (323)

where the subscripts o and s refer to the incident and. scattere4

radiation, 2 is the polarization vector of the radiation, A,,, (X)

is a third-order electronic matrix element, n is a Bose-Einstein

factor, the-lower and upper lines refer to Stokes and antiStokes

scattering" an U(x1:Vx',W 2 ) is the*Green's function specified

by Zq. (138). After evaluating'the Green's function for a mon-

atomic Rosenstock-Wevell model, Litzman and Cely find a continuous

* band of scattering vhich peaks at a frequetncy below the maximum

frequency of the lattice. Unfortunately, no surface modes exist

f or the) model considered. In a recent publication, 3Kavabata(2Rf has given a theoretical treatment of light scattering by surface

phonons (Rayleigh waves) in metals.

C. Brillouin S~cattering

The inelastic scattering of light &ssociated with the emission

or absorption of ucoustic phonons is termed Brillouin scattering

and can be vieved as arising from the Doppler effect. -she frequency

* ~shift is toa where wa is the acoustic.mode frequency. Experimentally,

one can drive a surface acoustic wave with an external power source.

Mhe acoustic wavo then serves a3 a diffraction grating so that d~f-

Iracted beaus appear in, tho scattered raclirtion. For the mt ordper,

sin 0am-~8 mAA ~

- -4



where 6.and 6. are the angles of incidence and scattering and X

and A are the wavelengths of the radiation and the acoustic phonon,

to the acoustic power P(w) at frequency w by

I. W.(I,/mI)[AP(w))m' (325)

where 1I is the incident intensity and A is a constant.

Using those techniques, Lean, Tsang, and Powell(18 have

studs. d the harmonic generation. of Rayleigh waves on y-cut, z'

oriaL~xl Li?~bO3 with the aid of a IHe-N'e laser. Cambon, Rouzeyre,

and Simon (2)have used the same type of laser to measure the

velocity of Rayi.oigh swaves on y-cut quartz.I

*1,
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9' SURFACE THERMAL EXPANSION

fe have seen in Section 2 that the equilibrium spacinso

*the atomic layers close to a free surfa'ce are 1.n general differ-

ent from the bulk value. One may also anticipate that the change

In equilibrium spacing with temperature--i.o.,-the thermal expan-

Sion--will also be different near a surface from that in the bulk.

Experimental information concerning surface thermal expansion

can be obtained i1h principle froia the temperature shifts of qragg

peaks in low energy electron diffraction if the kinematic approxi-

mation is valid. Multiple scattering effects will t*~nd to obscure

the extraction of surface thermal expansion values from the experi-

Mental data.

- - A discussion of experimental and theoretical. aspects of surface

thermal cecpansio~n has beon g tven by Wilson and liastow. (2he)

positions of normal Incidence diffraction peaks are given in the

kinematic approximatioa by

'Where Q is the scattering vector, X~ is the electron wavelength, at

Iis an intpgor, And a. is the spacing between equivalent l.ayers in

the direction normal to the surface. The electron Accelerating

- 7. -potential _3and 'the inner potential V1 are related to X by

I )~AY (lO.4/~(e)]i(327)

vhercE B E + V* rhe thermal expansion is then given

a~ da(328)

For low values of 9~ the scattering will bo mainly fron the

surface and the surfaco thar;mal xpansion will be obtainod.

ý5U



Experim~ental results have been reported by various workers.

Gelatt, Lagally, and Webb(2 1 found values of a"At (Cb is the

bulk value) on the order of one to-two for Ag and Ni. However,

temperature-dependent asymmetries of the Bragg peaks due to

absorption and the variation of the Debyui-Wallar factor with dis-

tance from the surface complicate the interpretation of the data.

Wilson and Bastow (260) have studied the (100) surfaces of Cr and

Mo. They find values of a Ar IV n the range between two and three.

!gnatjevs (6)has investigated the (111) surface of Xe and found

W a b values of about four or five.

A simple theoretical treatruont-of surface. thermal expansion
and (260)

has been given by Wilson adBastow based on the Griinoiscn

expression for thermal expansion. They find

a 1a h 3D 6 (329)

where y is the GrUnolsen constant, H'i~s the atomic mass, a0 is

the lattice spacing, and 9is the Debye. temperature. If y is the

same to.- surface layers as for bulk loyors,.then

G~ - us (330)
;b D U b)

This relation seems to be in rough agreement with the available -

experimental data.

In a czore complete theory, one would minimize the HeltaToltz

free energy with respect to variations in the various layer

spacings. This has been done by Allen~2 3 and by Keiiner and

Allen. 2 6  For the change in thermal expansion relative to the

bulk value, they obtain tbe expression for the L~ layer -

-j
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ib -k B oi i(j1 'a x ( 7p) h 2 !imPAc

t (331)

where 0 is the potential en'ergy matrix, w~ 5 tis .e pt normal mode

'requency, Y i(w) is the GrUneisen parameter gtoen by

yjj

a i is the i th latc spacing, and ao01 is a reference latticp spac-

ing. Kenner and Allen have carried out detailed calculations for

the (100) and (111) surfaces of Ar, Kr, and Xo using Lennard-Jones

interactions. They find a peak in a Cbat low temperatures assoc-

iated with the dispersion of~ the surface modes. Their results for

* Xe are significantly lower than the experimental results of

Ignat.'evs.

An alternative formulation of surface thermal expansion has

recently been given by Dobrzynski and Maradudin. (2 6 5) They evaluate

the Helmholtz free energy including anharmonic terms with the aid

of many-body, theoretic techniques. Specific calculations of the

surface thermal expansion for the (100) surfAce of a-Lron were

made using the model of Clark et al. (3)They found that o /a b

is sopewhat greater than uilty at high temperatures, but increasea

rapidly at temperatures below W00K.

111
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Fig. 10. rrqeccrf tran~sversae optical sitrfaca modes versus
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*Pi;ý 121, Intensity versu's temperature for electrons scattered
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Macafes- ýRa. 1-46.)
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F±g. 15. Li!enn square velocity versus atomic; position for a o,

tonic linear chain of 20 atoms at C-.K.

ý'ig;. 16. Energy-loss spectrum for a particular value ofO k:. The

line at w2- I corresDunds to the strwf.~e mode and the

broad band to the bulkt modos. (Atar rToundy and Mfills,

Ref. 200).

Fig. 17. iso-intensity curves in the q,, q2 Plane for surf aca

.scattering and for bulk scattering, In each c~ase, tzhe

situations Q < anid Q,2 »> Ql, are presented.

Fig. 18. Extinction cross-section La units ,,f the geometrical

-cross-section. versus frequency for a small spherical

NaG(. crystal of radius lpm, (After Ruppin and Lngla=,

Fig, 19. AboWtin oefficientversus: 7 ;quna for a crystal
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